module Camfort.Specification.Stencils.Grammar
( specParser, Specification(..), Region(..), Spec(..), Mod(..), lexer ) where
import Data.Char (isLetter, isNumber, isAlphaNum, toLower, isAlpha, isSpace)
import Data.List (intersect, sort, isPrefixOf)
import Data.Data
import Debug.Trace
import Camfort.Analysis.CommentAnnotator
import Camfort.Specification.Stencils.Syntax (showL)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: (Specification) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut4 :: (HappyAbsSyn ) -> (Specification)
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn5 :: ((String, Region)) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut5 :: (HappyAbsSyn ) -> ((String, Region))
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn6 :: (Region) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut6 :: (HappyAbsSyn ) -> (Region)
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn7 :: (Bool) -> (HappyAbsSyn )
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut7 :: (HappyAbsSyn ) -> (Bool)
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn8 :: (Spec) -> (HappyAbsSyn )
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut8 :: (HappyAbsSyn ) -> (Spec)
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn9 :: (Mod) -> (HappyAbsSyn )
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut9 :: (HappyAbsSyn ) -> (Mod)
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn10 :: ([Mod]) -> (HappyAbsSyn )
happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut10 :: (HappyAbsSyn ) -> ([Mod])
happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn11 :: (Mod) -> (HappyAbsSyn )
happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut11 :: (HappyAbsSyn ) -> (Mod)
happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn12 :: ([String]) -> (HappyAbsSyn )
happyIn12 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut12 :: (HappyAbsSyn ) -> ([String])
happyOut12 x = Happy_GHC_Exts.unsafeCoerce# x
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x36\x00\x61\x00\x00\x00\x5d\x00\x5a\x00\xfe\xff\x23\x00\x5c\x00\x18\x00\x4b\x00\x0b\x00\x00\x00\x59\x00\x00\x00\x00\x00\x58\x00\x57\x00\x56\x00\x55\x00\x00\x00\x18\x00\x54\x00\x53\x00\x07\x00\x52\x00\x50\x00\x4f\x00\x4e\x00\x4c\x00\x23\x00\x00\x00\x2d\x00\x18\x00\x1f\x00\x51\x00\x18\x00\x18\x00\x00\x00\x4d\x00\x00\x00\x47\x00\x1f\x00\x4a\x00\x49\x00\x48\x00\x46\x00\x45\x00\x00\x00\x18\x00\x1f\x00\x44\x00\x43\x00\x41\x00\x40\x00\x3b\x00\x00\x00\x2e\x00\x42\x00\x3f\x00\x3e\x00\x00\x00\x3a\x00\x35\x00\x34\x00\x00\x00\x33\x00\x32\x00\x30\x00\x3d\x00\x3d\x00\x3d\x00\x29\x00\x00\x00\x28\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x2f\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x39\x00\x37\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x31\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\x00\x2b\x00\x00\x00\x1e\x00\x20\x00\x13\x00\x00\x00\x00\x00\x00\x00\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x0a\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\xec\xff\x00\x00\x00\x00\x00\x00\xe9\xff\xeb\xff\x00\x00\xe8\xff\xe7\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf4\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xed\xff\xea\xff\xe9\xff\x00\x00\xee\xff\x00\x00\x00\x00\x00\x00\xf6\xff\xf7\xff\xfd\xff\xe5\xff\xef\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf5\xff\x00\x00\xfc\xff\xf1\xff\x00\x00\x00\x00\x00\x00\x00\x00\xe6\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf0\xff\x00\x00\x00\x00\x00\x00\xf8\xff\x00\x00\x00\x00\x00\x00\xf2\xff\xf2\xff\xf2\xff\x00\x00\xf3\xff\x00\x00\x00\x00\xf9\xff\xfa\xff\xfb\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x03\x00\x04\x00\x02\x00\x06\x00\x07\x00\x03\x00\x06\x00\x07\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x03\x00\x10\x00\x04\x00\x03\x00\x06\x00\x07\x00\x02\x00\x16\x00\x02\x00\x0b\x00\x0c\x00\x0d\x00\x12\x00\x13\x00\x10\x00\x04\x00\x08\x00\x17\x00\x06\x00\x07\x00\x16\x00\x02\x00\x0b\x00\x0c\x00\x0d\x00\x08\x00\x02\x00\x10\x00\x04\x00\x05\x00\x06\x00\x07\x00\x02\x00\x16\x00\x00\x00\x01\x00\x12\x00\x13\x00\x06\x00\x07\x00\x12\x00\x13\x00\x01\x00\x02\x00\x08\x00\x02\x00\x02\x00\x05\x00\x01\x00\x17\x00\x17\x00\x17\x00\x11\x00\x05\x00\x11\x00\x11\x00\x17\x00\xff\xff\x09\x00\x09\x00\x15\x00\x15\x00\x09\x00\x11\x00\xff\xff\x03\x00\x15\x00\xff\xff\x11\x00\x11\x00\x0f\x00\x11\x00\x09\x00\xff\xff\x10\x00\x0a\x00\x0a\x00\x0a\x00\x15\x00\x17\x00\x15\x00\x15\x00\x15\x00\x13\x00\x10\x00\x10\x00\x02\x00\x10\x00\xff\xff\xff\xff\xff\xff\x15\x00\xff\xff\xff\xff\x16\x00\x16\x00\x16\x00\x16\x00\x16\x00\x14\x00\x14\x00\xff\xff\x19\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x0c\x00\x0d\x00\x1d\x00\x0e\x00\x0f\x00\x47\x00\x1e\x00\x1f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x49\x00\x14\x00\x0d\x00\x4a\x00\x0e\x00\x0f\x00\x31\x00\x15\x00\x25\x00\x10\x00\x11\x00\x12\x00\x24\x00\x25\x00\x14\x00\x0d\x00\x37\x00\x30\x00\x1e\x00\x1f\x00\x15\x00\x26\x00\x10\x00\x11\x00\x12\x00\x27\x00\x06\x00\x14\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x29\x00\x15\x00\x04\x00\x02\x00\x24\x00\x25\x00\x0e\x00\x0f\x00\x24\x00\x25\x00\x06\x00\x04\x00\x2e\x00\x17\x00\x21\x00\x20\x00\x02\x00\x4c\x00\x4d\x00\x4e\x00\x45\x00\x49\x00\x46\x00\x47\x00\x41\x00\x00\x00\x3e\x00\x3f\x00\x42\x00\x43\x00\x40\x00\x39\x00\x00\x00\x0c\x00\x44\x00\x00\x00\x3a\x00\x3b\x00\x3d\x00\x3c\x00\x2b\x00\x00\x00\x29\x00\x2c\x00\x2d\x00\x2e\x00\x34\x00\x33\x00\x35\x00\x36\x00\x37\x00\x25\x00\x29\x00\x29\x00\x04\x00\x17\x00\x00\x00\x00\x00\x00\x00\x31\x00\x00\x00\x00\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x23\x00\x16\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr = Happy_Data_Array.array (1, 26) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11),
(12 , happyReduce_12),
(13 , happyReduce_13),
(14 , happyReduce_14),
(15 , happyReduce_15),
(16 , happyReduce_16),
(17 , happyReduce_17),
(18 , happyReduce_18),
(19 , happyReduce_19),
(20 , happyReduce_20),
(21 , happyReduce_21),
(22 , happyReduce_22),
(23 , happyReduce_23),
(24 , happyReduce_24),
(25 , happyReduce_25),
(26 , happyReduce_26)
]
happy_n_terms = 26 :: Int
happy_n_nonterms = 9 :: Int
happyReduce_1 = happySpecReduce_1 0# happyReduction_1
happyReduction_1 happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
happyIn4
(RegionDec (fst happy_var_1) (snd happy_var_1)
)}
happyReduce_2 = happyReduce 4# 0# happyReduction_2
happyReduction_2 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOut8 happy_x_2 of { happy_var_2 ->
case happyOut12 happy_x_4 of { happy_var_4 ->
happyIn4
(SpecDec happy_var_2 happy_var_4
) `HappyStk` happyRest}}
happyReduce_3 = happyReduce 5# 1# happyReduction_3
happyReduction_3 (happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_3 of { (TId happy_var_3) ->
case happyOut6 happy_x_5 of { happy_var_5 ->
happyIn5
((happy_var_3, happy_var_5)
) `HappyStk` happyRest}}
happyReduce_4 = happyReduce 10# 2# happyReduction_4
happyReduction_4 (happy_x_10 `HappyStk`
happy_x_9 `HappyStk`
happy_x_8 `HappyStk`
happy_x_7 `HappyStk`
happy_x_6 `HappyStk`
happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_5 of { (TNum happy_var_5) ->
case happyOutTok happy_x_8 of { (TNum happy_var_8) ->
case happyOut7 happy_x_9 of { happy_var_9 ->
happyIn6
(Forward (read happy_var_5) (read happy_var_8) happy_var_9
) `HappyStk` happyRest}}}
happyReduce_5 = happyReduce 10# 2# happyReduction_5
happyReduction_5 (happy_x_10 `HappyStk`
happy_x_9 `HappyStk`
happy_x_8 `HappyStk`
happy_x_7 `HappyStk`
happy_x_6 `HappyStk`
happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_5 of { (TNum happy_var_5) ->
case happyOutTok happy_x_8 of { (TNum happy_var_8) ->
case happyOut7 happy_x_9 of { happy_var_9 ->
happyIn6
(Backward (read happy_var_5) (read happy_var_8) happy_var_9
) `HappyStk` happyRest}}}
happyReduce_6 = happyReduce 10# 2# happyReduction_6
happyReduction_6 (happy_x_10 `HappyStk`
happy_x_9 `HappyStk`
happy_x_8 `HappyStk`
happy_x_7 `HappyStk`
happy_x_6 `HappyStk`
happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_5 of { (TNum happy_var_5) ->
case happyOutTok happy_x_8 of { (TNum happy_var_8) ->
case happyOut7 happy_x_9 of { happy_var_9 ->
happyIn6
(Centered (read happy_var_5) (read happy_var_8) happy_var_9
) `HappyStk` happyRest}}}
happyReduce_7 = happyReduce 6# 2# happyReduction_7
happyReduction_7 (happy_x_6 `HappyStk`
happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_5 of { (TNum happy_var_5) ->
happyIn6
(Centered 0 (read happy_var_5) True
) `HappyStk` happyRest}
happyReduce_8 = happySpecReduce_3 2# happyReduction_8
happyReduction_8 happy_x_3
happy_x_2
happy_x_1
= case happyOut6 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn6
(Or happy_var_1 happy_var_3
)}}
happyReduce_9 = happySpecReduce_3 2# happyReduction_9
happyReduction_9 happy_x_3
happy_x_2
happy_x_1
= case happyOut6 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn6
(And happy_var_1 happy_var_3
)}}
happyReduce_10 = happySpecReduce_3 2# happyReduction_10
happyReduction_10 happy_x_3
happy_x_2
happy_x_1
= case happyOut6 happy_x_2 of { happy_var_2 ->
happyIn6
(happy_var_2
)}
happyReduce_11 = happySpecReduce_1 2# happyReduction_11
happyReduction_11 happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
happyIn6
(Var happy_var_1
)}
happyReduce_12 = happySpecReduce_1 3# happyReduction_12
happyReduction_12 happy_x_1
= happyIn7
(False
)
happyReduce_13 = happySpecReduce_0 3# happyReduction_13
happyReduction_13 = happyIn7
(True
)
happyReduce_14 = happyReduce 4# 4# happyReduction_14
happyReduction_14 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOut12 happy_x_3 of { happy_var_3 ->
happyIn8
(Temporal happy_var_3 False
) `HappyStk` happyRest}
happyReduce_15 = happyReduce 5# 4# happyReduction_15
happyReduction_15 (happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOut12 happy_x_3 of { happy_var_3 ->
happyIn8
(Temporal happy_var_3 True
) `HappyStk` happyRest}
happyReduce_16 = happySpecReduce_3 4# happyReduction_16
happyReduction_16 happy_x_3
happy_x_2
happy_x_1
= case happyOut10 happy_x_1 of { happy_var_1 ->
case happyOut9 happy_x_2 of { happy_var_2 ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn8
(Spatial (happy_var_1 ++ [happy_var_2]) happy_var_3
)}}}
happyReduce_17 = happySpecReduce_2 4# happyReduction_17
happyReduction_17 happy_x_2
happy_x_1
= case happyOut9 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_2 of { happy_var_2 ->
happyIn8
(Spatial [happy_var_1] happy_var_2
)}}
happyReduce_18 = happySpecReduce_2 4# happyReduction_18
happyReduction_18 happy_x_2
happy_x_1
= case happyOut11 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_2 of { happy_var_2 ->
happyIn8
(Spatial [happy_var_1] happy_var_2
)}}
happyReduce_19 = happySpecReduce_1 4# happyReduction_19
happyReduction_19 happy_x_1
= case happyOut6 happy_x_1 of { happy_var_1 ->
happyIn8
(Spatial [] happy_var_1
)}
happyReduce_20 = happySpecReduce_1 5# happyReduction_20
happyReduction_20 happy_x_1
= happyIn9
(ReadOnce
)
happyReduce_21 = happySpecReduce_2 6# happyReduction_21
happyReduction_21 happy_x_2
happy_x_1
= case happyOut11 happy_x_1 of { happy_var_1 ->
case happyOut10 happy_x_2 of { happy_var_2 ->
happyIn10
(happy_var_1 : happy_var_2
)}}
happyReduce_22 = happySpecReduce_1 6# happyReduction_22
happyReduction_22 happy_x_1
= case happyOut11 happy_x_1 of { happy_var_1 ->
happyIn10
([happy_var_1]
)}
happyReduce_23 = happySpecReduce_1 7# happyReduction_23
happyReduction_23 happy_x_1
= happyIn11
(AtMost
)
happyReduce_24 = happySpecReduce_1 7# happyReduction_24
happyReduction_24 happy_x_1
= happyIn11
(AtLeast
)
happyReduce_25 = happySpecReduce_2 8# happyReduction_25
happyReduction_25 happy_x_2
happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
case happyOut12 happy_x_2 of { happy_var_2 ->
happyIn12
(happy_var_1 : happy_var_2
)}}
happyReduce_26 = happySpecReduce_1 8# happyReduction_26
happyReduction_26 happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
happyIn12
([happy_var_1]
)}
happyNewToken action sts stk [] =
happyDoAction 25# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
TId "stencil" -> cont 1#;
TId "region" -> cont 2#;
TId "readonce" -> cont 3#;
TId "reflexive" -> cont 4#;
TId "irreflexive" -> cont 5#;
TId "atmost" -> cont 6#;
TId "atleast" -> cont 7#;
TId "dims" -> cont 8#;
TId "dim" -> cont 9#;
TId "depth" -> cont 10#;
TId "forward" -> cont 11#;
TId "backward" -> cont 12#;
TId "centered" -> cont 13#;
TId "dependency" -> cont 14#;
TId "mutual" -> cont 15#;
TId happy_dollar_dollar -> cont 16#;
TNum happy_dollar_dollar -> cont 17#;
TPlus -> cont 18#;
TStar -> cont 19#;
TDoubleColon -> cont 20#;
TEqual -> cont 21#;
TLParen -> cont 22#;
TRParen -> cont 23#;
TComma -> cont 24#;
_ -> happyError' (tk:tks)
}
happyError_ 25# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)
happyThen :: () => Either AnnotationParseError a -> (a -> Either AnnotationParseError b) -> Either AnnotationParseError b
happyThen = (>>=)
happyReturn :: () => a -> Either AnnotationParseError a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> Either AnnotationParseError a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> Either AnnotationParseError a
happyError' = happyError
parseSpec tks = happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))
happySeq = happyDontSeq
data Specification
= RegionDec String Region
| SpecDec Spec [String]
deriving (Show, Eq, Ord, Typeable, Data)
data Region
= Forward Int Int Bool
| Backward Int Int Bool
| Centered Int Int Bool
| Or Region Region
| And Region Region
| Var String
deriving (Show, Eq, Ord, Typeable, Data)
data Spec
= Spatial [Mod] Region
| Temporal [String] Bool
deriving (Show, Eq, Ord, Typeable, Data)
data Mod
= AtLeast
| AtMost
| ReadOnce
deriving (Show, Eq, Ord, Typeable, Data)
data Token
= TDoubleColon
| TStar
| TPlus
| TEqual
| TComma
| TLParen
| TRParen
| TId String
| TNum String
deriving (Show)
addToTokens :: Token -> String -> Either AnnotationParseError [ Token ]
addToTokens tok rest = do
tokens <- lexer' rest
return $ tok : tokens
stripLeadingWhiteSpace (' ':xs) = stripLeadingWhiteSpace xs
stripLeadingWhiteSpace ('\t':xs) = stripLeadingWhiteSpace xs
stripLeadingWhiteSpace ('\n':xs) = stripLeadingWhiteSpace xs
stripLeadingWhiteSpace xs = xs
lexer :: String -> Either AnnotationParseError [ Token ]
lexer input | length (stripLeadingWhiteSpace input) >= 2 =
case stripLeadingWhiteSpace input of
'=':input' ->
if (input' `hasPrefix` "stencil" || input' `hasPrefix` "region")
then lexer' input'
else Left NotAnnotation
_ -> Left NotAnnotation
where
hasPrefix [] str = False
hasPrefix (' ':xs) str = hasPrefix xs str
hasPrefix xs str = isPrefixOf str xs
lexer _ = Left NotAnnotation
lexer' :: String -> Either AnnotationParseError [ Token ]
lexer' [] = return []
lexer' (' ':xs) = lexer' xs
lexer' ('\t':xs) = lexer' xs
lexer' (':':':':xs) = addToTokens TDoubleColon xs
lexer' ('*':xs) = addToTokens TStar xs
lexer' ('+':xs) = addToTokens TPlus xs
lexer' ('=':xs) = addToTokens TEqual xs
lexer' (',':xs)
| x':xs' <- dropWhile isSpace xs, not (isNumber x') = lexer' (x':xs')
| otherwise = addToTokens TComma xs
lexer' ('(':xs) = addToTokens TLParen xs
lexer' (')':xs) = addToTokens TRParen xs
lexer' (x:xs)
| isLetter x = aux TId $ \ c -> isAlphaNum c || c == '_'
| isNumber x = aux TNum isNumber
| otherwise
= failWith $ "Not an indentifier " ++ show x
where
aux f p = (f target :) `fmap` lexer' rest
where (target, rest) = span p (x:xs)
lexer' x
= failWith $ "Not a valid piece of stencil syntax " ++ show x
specParser :: AnnotationParser Specification
specParser src = do
tokens <- lexer src
parseSpec tokens >>= modValidate
modValidate :: Specification -> Either AnnotationParseError Specification
modValidate (SpecDec (Spatial mods r) vars) =
do mods' <- modValidate' $ sort mods
return $ SpecDec (Spatial mods' r) vars
where modValidate' [] = return $ []
modValidate' (AtLeast : AtLeast : xs)
= failWith "Duplicate 'atLeast' modifier; use at most one."
modValidate' (AtMost : AtMost : xs)
= failWith "Duplicate 'atMost' modifier; use at most one."
modValidate' (ReadOnce : ReadOnce : xs)
= failWith "Duplicate 'readOnce' modifier; use at most one."
modValidate' (AtLeast : AtMost : xs)
= failWith $ "Conflicting modifiers: cannot use 'atLeast' and "
++ "'atMost' together"
modValidate' (x : xs)
= do xs' <- modValidate' xs
return $ x : xs'
modValidate x = return x
happyError :: [ Token ] -> Either AnnotationParseError a
happyError t = failWith $ "Could not parse specification at: " ++ show t
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail i tk st
1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ i tk
happyFail i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b