module Camfort.Specification.Stencils.CheckBackend where
import Data.Data
import Data.Maybe
import Data.List
import Data.Generics.Uniplate.Operations
import Control.Monad.State.Lazy
import Control.Monad.Reader
import Control.Monad.Writer hiding (Product,Sum)
import Camfort.Specification.Stencils.InferenceBackend
import Camfort.Specification.Stencils.Syntax
import Camfort.Specification.Stencils.Model
import qualified Camfort.Specification.Stencils.Grammar as SYN
import Camfort.Analysis.Loops (collect)
import Camfort.Analysis.Annotations
import Camfort.Helpers.Vec
import Camfort.Helpers hiding (lineCol, spanLineCol)
import qualified Language.Fortran.AST as F
import qualified Language.Fortran.Analysis as FA
import qualified Language.Fortran.Analysis.Types as FAT
import qualified Language.Fortran.Analysis.Renaming as FAR
import qualified Language.Fortran.Analysis.BBlocks as FAB
import qualified Language.Fortran.Analysis.DataFlow as FAD
import Language.Fortran.Util.Position
import qualified Data.Map as M
import Data.Set hiding (map)
type ErrorMsg = String
class SynToAst s t | s -> t where
synToAst :: (?renv :: RegionEnv) => s -> Either ErrorMsg t
instance SynToAst SYN.Specification (Either RegionEnv SpecDecls) where
synToAst (SYN.SpecDec spec vars) = do
spec' <- synToAst spec
return $ Right $ [(vars, spec')]
synToAst (SYN.RegionDec rvar region) = do
spec' <- synToAst $ region
return $ Left [(rvar, spec')]
instance SynToAst SYN.Spec Specification where
synToAst (SYN.Spatial mods r) = do
(modLinear, approx) <- synToAst mods
r' <- synToAst r
let s' = Spatial modLinear r'
return $ Specification $ Left $
case approx of
Just SYN.AtMost -> Bound Nothing (Just s')
Just SYN.AtLeast -> Bound (Just s') Nothing
Nothing -> Exact s'
synToAst (SYN.Temporal vars mutual) =
return $ Specification $ Right $ Dependency vars mutual
instance SynToAst (SYN.Region) RegionSum where
synToAst = dnf
dnf :: (?renv :: RegionEnv) => SYN.Region -> Either ErrorMsg RegionSum
dnf (SYN.And r1 r2) = do
r1' <- dnf r1
r2' <- dnf r2
return $ Sum $ unSum r1' >>= (\(Product ps1) ->
unSum r2' >>= (\(Product ps2) ->
return $ Product $ ps1 ++ ps2))
dnf (SYN.Or r1 r2) = do
r1' <- dnf r1
r2' <- dnf r2
return $ Sum $ unSum r1' ++ unSum r2'
dnf (SYN.Forward dep dim reflx) = return $ Sum [Product [Forward dep dim reflx]]
dnf (SYN.Backward dep dim reflx) = return $ Sum [Product [Backward dep dim reflx]]
dnf (SYN.Centered dep dim reflx) = return $ Sum [Product [Centered dep dim reflx]]
dnf (SYN.Var v) =
case lookup v ?renv of
Nothing -> Left $ "Error: region " ++ v ++ " is not in scope."
Just rs -> return $ rs
instance SynToAst [SYN.Mod]
(Linearity, Maybe SYN.Mod) where
synToAst mods = return (linearity, approx)
where
linearity = if SYN.ReadOnce `elem` mods then Linear else NonLinear
approx = find' isApprox mods
isApprox SYN.AtMost = Just SYN.AtMost
isApprox SYN.AtLeast = Just SYN.AtLeast
isApprox _ = Nothing
find' :: Eq a => (a -> Maybe b) -> [a] -> Maybe b
find' p [] = Nothing
find' p (x : xs) =
case p x of
Nothing -> find' p xs
Just b -> Just b