----------------------------------------------------------------------------- -- | -- Copyright : (C) 2012 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : portable -- -- We represent the target language itself as an ideal monad supplied by the -- user, and provide a 'Scope' monad transformer for introducing bound -- variables in user supplied terms. Users supply a 'Monad' and 'Traversable' -- instance, and we traverse to find free variables, and use the 'Monad' to -- perform substitution that avoids bound variables. -- -- An untyped lambda calculus: -- -- @ -- {-\# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable \#-} -- import Bound -- import Control.Applicative -- import Control.Monad ('Control.Monad.ap') -- import Prelude.Extras -- import Data.Foldable -- import Data.Traversable -- @ -- -- @ -- infixl 9 :\@ -- data Exp a = V a | Exp a :\@ Exp a | Lam ('Scope' () Exp a) -- deriving ('Eq','Ord','Show','Read','Functor','Data.Foldable.Foldable','Data.Foldable.Traversable') -- @ -- -- @ -- instance 'Prelude.Extras.Eq1' Exp -- instance 'Prelude.Extras.Ord1' Exp -- instance 'Prelude.Extras.Show1' Exp -- instance 'Prelude.Extras.Read1' Exp -- instance 'Control.Applicative.Applicative' Exp where 'Control.Applicative.pure' = V; ('<*>') = 'Control.Monad.ap' -- @ -- -- @ -- instance 'Monad' Exp where -- 'return' = V -- V a '>>=' f = f a -- (x :\@ y) '>>=' f = (x '>>=' f) :\@ (y >>= f) -- Lam e '>>=' f = Lam (e '>>>=' f) -- @ -- -- @ -- lam :: 'Eq' a => a -> 'Exp' a -> 'Exp' a -- lam v b = Lam ('abstract1' v b) -- @ -- -- @ -- whnf :: 'Exp' a -> 'Exp' a -- whnf (f :\@ a) = case whnf f of -- Lam b -> whnf ('instantiate1' a b) -- f' -> f' :\@ a -- whnf e = e -- @ -- -- More exotic combinators for manipulating a 'Scope' can be imported from -- "Bound.Scope". -- -- You can also retain names in your bound variables by using 'Bound.Name.Name' -- and the related combinators from "Bound.Name". They are not re-exported -- from this module by default. -- -- The approach used in this package was first elaborated upon by Richard Bird -- and Ross Patterson -- in \"de Bruijn notation as a nested data type\", available from -- <http://www.cs.uwyo.edu/~jlc/courses/5000_fall_08/debruijn_as_nested_datatype.pdf> -- -- However, the combinators they used required higher rank types. Here we -- demonstrate that the higher rank @gfold@ combinator they used isn't necessary -- to build the monad and use a monad transformer to encapsulate the novel -- recursion pattern in their generalized de Bruijn representation. It is named -- 'Scope' to match up with the terminology and usage pattern from Conor McBride -- and James McKinna's \"I am not a number: I am a free variable\", available -- from <http://www.cs.st-andrews.ac.uk/~james/RESEARCH/notanum.pdf>, but since -- the set of variables is visible in the type, we can provide stronger type -- safety guarantees. -- -- There are longer examples in the @examples/@ folder: -- -- <https://github.com/ekmett/bound/tree/master/examples> -- -- (1) /Simple.hs/ provides an untyped lambda calculus with recursive let -- bindings and includes an evaluator for the untyped lambda calculus and a -- longer example taken from Lennart Augustsson's "λ-calculus cooked four -- ways" available from <http://www.augustsson.net/Darcs/Lambda/top.pdf> -- -- 2. /Derived.hs/ shows how much of the API can be automated with -- DeriveTraversable and adds combinators for building binders that support -- pattern matching. -- -- 3. /Overkill.hs/ provides very strongly typed pattern matching many modern -- language extensions, including polymorphic kinds to ensure type safety. -- In general, the approach taken by Derived seems to deliver a better power -- to weight ratio. ---------------------------------------------------------------------------- module Bound ( -- * Manipulating user terms substitute , isClosed , closed -- * Scopes introduce bound variables , Scope(..) -- ** Abstraction over bound variables , abstract, abstract1 -- ** Instantiation of bound variables , instantiate, instantiate1 -- * Structures permitting substitution , Bound(..) , (=<<<) -- * Conversion to Traditional de Bruijn , Var(..) , fromScope , toScope ) where import Bound.Var import Bound.Class import Bound.Scope import Bound.Term