{-# LANGUAGE FlexibleInstances #-} module Plugin.Pl.Transform ( transform, ) where import Plugin.Pl.Common import Plugin.Pl.PrettyPrinter () import qualified Data.Map as M import Data.Graph (stronglyConnComp, flattenSCC, flattenSCCs) import Control.Monad.Trans.State {- nub :: Ord a => [a] -> [a] nub = nub' S.empty where nub' _ [] = [] nub' set (x:xs) | x `S.member` set = nub' set xs | otherwise = x: nub' (x `S.insert` set) xs -} occursP :: String -> Pattern -> Bool occursP v (PVar v') = v == v' occursP v (PTuple p1 p2) = v `occursP` p1 || v `occursP` p2 occursP v (PCons p1 p2) = v `occursP` p1 || v `occursP` p2 freeIn :: String -> Expr -> Int freeIn v (Var _ v') = fromEnum $ v == v' freeIn v (Lambda pat e) = if v `occursP` pat then 0 else freeIn v e freeIn v (App e1 e2) = freeIn v e1 + freeIn v e2 freeIn v (Let ds e') = if v `elem` map declName ds then 0 else freeIn v e' + sum [freeIn v e | Define _ e <- ds] isFreeIn :: String -> Expr -> Bool isFreeIn v e = freeIn v e > 0 tuple :: [Expr] -> Expr tuple es = foldr1 (\x y -> Var Inf "," `App` x `App` y) es tupleP :: [String] -> Pattern tupleP vs = foldr1 PTuple $ PVar `map` vs dependsOn :: [Decl] -> Decl -> [Decl] dependsOn ds d = [d' | d' <- ds, declName d' `isFreeIn` declExpr d] unLet :: Expr -> Expr unLet (App e1 e2) = App (unLet e1) (unLet e2) unLet (Let [] e) = unLet e unLet (Let ds e) = unLet $ (Lambda (tupleP $ declName `map` dsYes) (Let dsNo e)) `App` (fix' `App` (Lambda (tupleP $ declName `map` dsYes) (tuple $ declExpr `map` dsYes))) where comps = stronglyConnComp [(d',d',dependsOn ds d') | d' <- ds] dsYes = flattenSCC $ head comps dsNo = flattenSCCs $ tail comps unLet (Lambda v e) = Lambda v (unLet e) unLet (Var f x) = Var f x type Env = M.Map String String -- It's a pity we still need that for the pointless transformation. -- Otherwise a newly created id/const/... could be bound by a lambda -- e.g. transform' (\id x -> x) ==> transform' (\id -> id) ==> id alphaRename :: Expr -> Expr alphaRename e = alpha e `evalState` M.empty where alpha :: Expr -> State Env Expr alpha (Var f v) = do fm <- get; return $ Var f $ maybe v id (M.lookup v fm) alpha (App e1 e2) = liftM2 App (alpha e1) (alpha e2) alpha (Let _ _) = assert False bt alpha (Lambda v e') = inEnv $ liftM2 Lambda (alphaPat v) (alpha e') -- act like a reader monad inEnv :: State s a -> State s a inEnv f = gets $ evalState f alphaPat (PVar v) = do fm <- get let v' = "$" ++ show (M.size fm) put $ M.insert v v' fm return $ PVar v' alphaPat (PTuple p1 p2) = liftM2 PTuple (alphaPat p1) (alphaPat p2) alphaPat (PCons p1 p2) = liftM2 PCons (alphaPat p1) (alphaPat p2) transform :: Expr -> Expr transform = transform' . alphaRename . unLet transform' :: Expr -> Expr transform' (Let {}) = assert False bt transform' (Var f v) = Var f v transform' (App e1 e2) = App (transform' e1) (transform' e2) transform' (Lambda (PTuple p1 p2) e) = transform' $ Lambda (PVar "z") $ (Lambda p1 $ Lambda p2 $ e) `App` f `App` s where f = Var Pref "fst" `App` Var Pref "z" s = Var Pref "snd" `App` Var Pref "z" transform' (Lambda (PCons p1 p2) e) = transform' $ Lambda (PVar "z") $ (Lambda p1 $ Lambda p2 $ e) `App` f `App` s where f = Var Pref "head" `App` Var Pref "z" s = Var Pref "tail" `App` Var Pref "z" transform' (Lambda (PVar v) e) = transform' $ getRidOfV e where getRidOfV (Var f v') | v == v' = id' | otherwise = const' `App` Var f v' getRidOfV l@(Lambda pat _) = assert (not $ v `occursP` pat) $ getRidOfV $ transform' l getRidOfV (Let {}) = assert False bt getRidOfV e'@(App e1 e2) | fr1 && fr2 = scomb `App` getRidOfV e1 `App` getRidOfV e2 | fr1 = flip' `App` getRidOfV e1 `App` e2 | Var _ v' <- e2, v' == v = e1 | fr2 = comp `App` e1 `App` getRidOfV e2 | True = const' `App` e' where fr1 = v `isFreeIn` e1 fr2 = v `isFreeIn` e2