{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 701 && __GLASGOW_HASKELL__ != 702 {-# LANGUAGE Safe #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Binary.Put -- Copyright : Lennart Kolmodin -- License : BSD3-style (see LICENSE) -- -- Maintainer : Lennart Kolmodin <kolmodin@gmail.com> -- Stability : stable -- Portability : Portable to Hugs and GHC. Requires MPTCs -- -- The Put monad. A monad for efficiently constructing lazy bytestrings. -- ----------------------------------------------------------------------------- module Data.Binary.Put ( -- * The Put type Put , PutM(..) , runPut , runPutM , putBuilder , execPut -- * Flushing the implicit parse state , flush -- * Primitives , putWord8 , putByteString , putLazyByteString -- * Big-endian primitives , putWord16be , putWord32be , putWord64be -- * Little-endian primitives , putWord16le , putWord32le , putWord64le -- * Host-endian, unaligned writes , putWordhost -- :: Word -> Put , putWord16host -- :: Word16 -> Put , putWord32host -- :: Word32 -> Put , putWord64host -- :: Word64 -> Put ) where import Data.Monoid import Data.Binary.Builder (Builder, toLazyByteString) import qualified Data.Binary.Builder as B import Data.Word import qualified Data.ByteString as S import qualified Data.ByteString.Lazy as L import Control.Applicative import Prelude -- Silence AMP warning. ------------------------------------------------------------------------ -- XXX Strict in buffer only. data PairS a = PairS a !Builder sndS :: PairS a -> Builder sndS (PairS _ b) = b -- | The PutM type. A Writer monad over the efficient Builder monoid. newtype PutM a = Put { unPut :: PairS a } -- | Put merely lifts Builder into a Writer monad, applied to (). type Put = PutM () instance Functor PutM where fmap f m = Put $ let PairS a w = unPut m in PairS (f a) w {-# INLINE fmap #-} instance Applicative PutM where pure = return m <*> k = Put $ let PairS f w = unPut m PairS x w' = unPut k in PairS (f x) (w `mappend` w') -- Standard Writer monad, with aggressive inlining instance Monad PutM where return a = Put $ PairS a mempty {-# INLINE return #-} m >>= k = Put $ let PairS a w = unPut m PairS b w' = unPut (k a) in PairS b (w `mappend` w') {-# INLINE (>>=) #-} m >> k = Put $ let PairS _ w = unPut m PairS b w' = unPut k in PairS b (w `mappend` w') {-# INLINE (>>) #-} tell :: Builder -> Put tell b = Put $ PairS () b {-# INLINE tell #-} putBuilder :: Builder -> Put putBuilder = tell {-# INLINE putBuilder #-} -- | Run the 'Put' monad execPut :: PutM a -> Builder execPut = sndS . unPut {-# INLINE execPut #-} -- | Run the 'Put' monad with a serialiser runPut :: Put -> L.ByteString runPut = toLazyByteString . sndS . unPut {-# INLINE runPut #-} -- | Run the 'Put' monad with a serialiser and get its result runPutM :: PutM a -> (a, L.ByteString) runPutM (Put (PairS f s)) = (f, toLazyByteString s) {-# INLINE runPutM #-} ------------------------------------------------------------------------ -- | Pop the ByteString we have constructed so far, if any, yielding a -- new chunk in the result ByteString. flush :: Put flush = tell B.flush {-# INLINE flush #-} -- | Efficiently write a byte into the output buffer putWord8 :: Word8 -> Put putWord8 = tell . B.singleton {-# INLINE putWord8 #-} -- | An efficient primitive to write a strict ByteString into the output buffer. -- It flushes the current buffer, and writes the argument into a new chunk. putByteString :: S.ByteString -> Put putByteString = tell . B.fromByteString {-# INLINE putByteString #-} -- | Write a lazy ByteString efficiently, simply appending the lazy -- ByteString chunks to the output buffer putLazyByteString :: L.ByteString -> Put putLazyByteString = tell . B.fromLazyByteString {-# INLINE putLazyByteString #-} -- | Write a Word16 in big endian format putWord16be :: Word16 -> Put putWord16be = tell . B.putWord16be {-# INLINE putWord16be #-} -- | Write a Word16 in little endian format putWord16le :: Word16 -> Put putWord16le = tell . B.putWord16le {-# INLINE putWord16le #-} -- | Write a Word32 in big endian format putWord32be :: Word32 -> Put putWord32be = tell . B.putWord32be {-# INLINE putWord32be #-} -- | Write a Word32 in little endian format putWord32le :: Word32 -> Put putWord32le = tell . B.putWord32le {-# INLINE putWord32le #-} -- | Write a Word64 in big endian format putWord64be :: Word64 -> Put putWord64be = tell . B.putWord64be {-# INLINE putWord64be #-} -- | Write a Word64 in little endian format putWord64le :: Word64 -> Put putWord64le = tell . B.putWord64le {-# INLINE putWord64le #-} ------------------------------------------------------------------------ -- | /O(1)./ Write a single native machine word. The word is -- written in host order, host endian form, for the machine you're on. -- On a 64 bit machine the Word is an 8 byte value, on a 32 bit machine, -- 4 bytes. Values written this way are not portable to -- different endian or word sized machines, without conversion. -- putWordhost :: Word -> Put putWordhost = tell . B.putWordhost {-# INLINE putWordhost #-} -- | /O(1)./ Write a Word16 in native host order and host endianness. -- For portability issues see @putWordhost@. putWord16host :: Word16 -> Put putWord16host = tell . B.putWord16host {-# INLINE putWord16host #-} -- | /O(1)./ Write a Word32 in native host order and host endianness. -- For portability issues see @putWordhost@. putWord32host :: Word32 -> Put putWord32host = tell . B.putWord32host {-# INLINE putWord32host #-} -- | /O(1)./ Write a Word64 in native host order -- On a 32 bit machine we write two host order Word32s, in big endian form. -- For portability issues see @putWordhost@. putWord64host :: Word64 -> Put putWord64host = tell . B.putWord64host {-# INLINE putWord64host #-}