#if __GLASGOW_HASKELL__ >= 702
#endif
#if __GLASGOW_HASKELL__ >= 706
#endif
#if __GLASGOW_HASKELL__ >= 708
#elif __GLASGOW_HASKELL__ >= 702
#endif
module Data.Bifunctor.Sum where
import Data.Bifunctor
import Data.Bifunctor.Functor
import Data.Bifoldable
import Data.Bitraversable
#if __GLASGOW_HASKELL__ < 710
import Data.Functor
#endif
#if __GLASGOW_HASKELL__ >= 708
import Data.Typeable
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics
#endif
data Sum p q a b = L2 (p a b) | R2 (q a b)
deriving ( Eq, Ord, Show, Read
#if __GLASGOW_HASKELL__ >= 702
, Generic
#endif
#if __GLASGOW_HASKELL__ >= 708
, Generic1
, Typeable
#endif
)
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708
data SumMetaData
data SumMetaConsL2
data SumMetaConsR2
instance Datatype SumMetaData where
datatypeName _ = "Sum"
moduleName _ = "Data.Bifunctor.Sum"
instance Constructor SumMetaConsL2 where
conName _ = "L2"
instance Constructor SumMetaConsR2 where
conName _ = "R2"
instance Generic1 (Sum p q a) where
type Rep1 (Sum p q a) = D1 SumMetaData ((:+:)
(C1 SumMetaConsL2 (S1 NoSelector (Rec1 (p a))))
(C1 SumMetaConsR2 (S1 NoSelector (Rec1 (q a)))))
from1 (L2 p) = M1 (L1 (M1 (M1 (Rec1 p))))
from1 (R2 q) = M1 (R1 (M1 (M1 (Rec1 q))))
to1 (M1 (L1 (M1 (M1 p)))) = L2 (unRec1 p)
to1 (M1 (R1 (M1 (M1 q)))) = R2 (unRec1 q)
#endif
instance (Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) where
bimap f g (L2 p) = L2 (bimap f g p)
bimap f g (R2 q) = R2 (bimap f g q)
first f (L2 p) = L2 (first f p)
first f (R2 q) = R2 (first f q)
second f (L2 p) = L2 (second f p)
second f (R2 q) = R2 (second f q)
instance (Bifoldable p, Bifoldable q) => Bifoldable (Sum p q) where
bifoldMap f g (L2 p) = bifoldMap f g p
bifoldMap f g (R2 q) = bifoldMap f g q
instance (Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) where
bitraverse f g (L2 p) = L2 <$> bitraverse f g p
bitraverse f g (R2 q) = R2 <$> bitraverse f g q
instance BifunctorFunctor (Sum p) where
bifmap _ (L2 p) = L2 p
bifmap f (R2 q) = R2 (f q)
instance BifunctorMonad (Sum p) where
bireturn = R2
bijoin (L2 p) = L2 p
bijoin (R2 q) = q
bibind _ (L2 p) = L2 p
bibind f (R2 q) = f q