{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifoldable ( Bifoldable(..) , bifoldr' , bifoldr1 , bifoldrM , bifoldl' , bifoldl1 , bifoldlM , bitraverse_ , bifor_ , bimapM_ , biforM_ , bimsum , bisequenceA_ , bisequence_ , biasum , biList , binull , bilength , bielem , bimaximum , biminimum , bisum , biproduct , biconcat , biconcatMap , biand , bior , biany , biall , bimaximumBy , biminimumBy , binotElem , bifind ) where import Control.Applicative import Control.Monad import Data.Functor.Constant import Data.Maybe (fromMaybe) import Data.Monoid #if MIN_VERSION_base(4,7,0) import Data.Coerce #else import Unsafe.Coerce #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) import Data.Semigroup (Arg(..)) #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics (K1(..)) #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 import Data.Typeable #endif -- | 'Bifoldable' identifies foldable structures with two different varieties -- of elements (as opposed to 'Foldable', which has one variety of element). -- Common examples are 'Either' and '(,)': -- -- > instance Bifoldable Either where -- > bifoldMap f _ (Left a) = f a -- > bifoldMap _ g (Right b) = g b -- > -- > instance Bifoldable (,) where -- > bifoldr f g z (a, b) = f a (g b z) -- -- A minimal 'Bifoldable' definition consists of either 'bifoldMap' or -- 'bifoldr'. When defining more than this minimal set, one should ensure -- that the following identities hold: -- -- @ -- 'bifold' ≡ 'bifoldMap' 'id' 'id' -- 'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty' -- 'bifoldr' f g z t ≡ 'appEndo' ('bifoldMap' (Endo . f) (Endo . g) t) z -- @ -- -- If the type is also a 'Bifunctor' instance, it should satisfy: -- -- > 'bifoldMap' f g ≡ 'bifold' . 'bimap' f g -- -- which implies that -- -- > 'bifoldMap' f g . 'bimap' h i ≡ 'bifoldMap' (f . h) (g . i) class Bifoldable p where -- | Combines the elements of a structure using a monoid. -- -- @'bifold' ≡ 'bifoldMap' 'id' 'id'@ bifold :: Monoid m => p m m -> m bifold = bifoldMap id id {-# INLINE bifold #-} -- | Combines the elements of a structure, given ways of mapping them to a -- common monoid. -- -- @'bifoldMap' f g ≡ 'bifoldr' ('mappend' . f) ('mappend' . g) 'mempty'@ bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m bifoldMap f g = bifoldr (mappend . f) (mappend . g) mempty {-# INLINE bifoldMap #-} -- | Combines the elements of a structure in a right associative manner. Given -- a hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldr' f g z ≡ 'foldr' ('either' f g) z . toEitherList@ bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c bifoldr f g z t = appEndo (bifoldMap (Endo #. f) (Endo #. g) t) z {-# INLINE bifoldr #-} -- | Combines the elments of a structure in a left associative manner. Given a -- hypothetical function @toEitherList :: p a b -> [Either a b]@ yielding a -- list of all elements of a structure in order, the following would hold: -- -- @'bifoldl' f g z ≡ 'foldl' (\acc -> 'either' (f acc) (g acc)) z . toEitherList@ -- -- Note that if you want an efficient left-fold, you probably want to use -- 'bifoldl'' instead of 'bifoldl'. The reason is that the latter does not -- force the "inner" results, resulting in a thunk chain which then must be -- evaluated from the outside-in. bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c bifoldl f g z t = appEndo (getDual (bifoldMap (Dual . Endo . flip f) (Dual . Endo . flip g) t)) z {-# INLINE bifoldl #-} #if __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bifoldr | bifoldMap #-} #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 deriving instance Typeable Bifoldable #endif #if MIN_VERSION_base(4,9,0) || MIN_VERSION_semigroups(0,16,2) instance Bifoldable Arg where bifoldMap f g (Arg a b) = f a `mappend` g b #endif instance Bifoldable (,) where bifoldMap f g ~(a, b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable Const where bifoldMap f _ (Const a) = f a {-# INLINE bifoldMap #-} instance Bifoldable Constant where bifoldMap f _ (Constant a) = f a {-# INLINE bifoldMap #-} #if __GLASGOW_HASKELL__ >= 702 instance Bifoldable (K1 i) where bifoldMap f _ (K1 c) = f c {-# INLINE bifoldMap #-} #endif instance Bifoldable ((,,) x) where bifoldMap f g ~(_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,) x y) where bifoldMap f g ~(_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,) x y z) where bifoldMap f g ~(_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,) x y z w) where bifoldMap f g ~(_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} instance Bifoldable ((,,,,,,) x y z w v) where bifoldMap f g ~(_,_,_,_,_,a,b) = f a `mappend` g b {-# INLINE bifoldMap #-} #ifdef MIN_VERSION_tagged instance Bifoldable Tagged where bifoldMap _ g (Tagged b) = g b {-# INLINE bifoldMap #-} #endif instance Bifoldable Either where bifoldMap f _ (Left a) = f a bifoldMap _ g (Right b) = g b {-# INLINE bifoldMap #-} -- | As 'bifoldr', but strict in the result of the reduction functions at each -- step. bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c bifoldr' f g z0 xs = bifoldl f' g' id xs z0 where f' k x z = k $! f x z g' k x z = k $! g x z {-# INLINE bifoldr' #-} -- | A variant of 'bifoldr' that has no base case, -- and thus may only be applied to non-empty structures. bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a bifoldr1 f xs = fromMaybe (error "bifoldr1: empty structure") (bifoldr mbf mbf Nothing xs) where mbf x m = Just (case m of Nothing -> x Just y -> f x y) {-# INLINE bifoldr1 #-} -- | Right associative monadic bifold over a structure. bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c bifoldrM f g z0 xs = bifoldl f' g' return xs z0 where f' k x z = f x z >>= k g' k x z = g x z >>= k {-# INLINE bifoldrM #-} -- | As 'bifoldl', but strict in the result of the reduction functions at each -- step. -- -- This ensures that each step of the bifold is forced to weak head normal form -- before being applied, avoiding the collection of thunks that would otherwise -- occur. This is often what you want to strictly reduce a finite structure to -- a single, monolithic result (e.g., 'bilength'). bifoldl':: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a bifoldl' f g z0 xs = bifoldr f' g' id xs z0 where f' x k z = k $! f z x g' x k z = k $! g z x {-# INLINE bifoldl' #-} -- | A variant of 'bifoldl' that has no base case, -- and thus may only be applied to non-empty structures. bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a bifoldl1 f xs = fromMaybe (error "bifoldl1: empty structure") (bifoldl mbf mbf Nothing xs) where mbf m y = Just (case m of Nothing -> y Just x -> f x y) {-# INLINe bifoldl1 #-} -- | Left associative monadic bifold over a structure. bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a bifoldlM f g z0 xs = bifoldr f' g' return xs z0 where f' x k z = f z x >>= k g' x k z = g z x >>= k {-# INLINE bifoldlM #-} -- | Map each element of a structure using one of two actions, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results, see 'Data.Bitraversable.bitraverse'. bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () bitraverse_ f g = bifoldr ((*>) . f) ((*>) . g) (pure ()) {-# INLINE bitraverse_ #-} -- | As 'bitraverse_', but with the structure as the primary argument. For a -- version that doesn't ignore the results, see 'Data.Bitraversable.bifor'. -- -- >>> > bifor_ ('a', "bc") print (print . reverse) -- 'a' -- "cb" bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () bifor_ t f g = bitraverse_ f g t {-# INLINE bifor_ #-} -- | As 'Data.Bitraversable.bimapM', but ignores the results of the functions, -- merely performing the "actions". bimapM_:: (Bifoldable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m () bimapM_ f g = bifoldr ((>>) . f) ((>>) . g) (return ()) {-# INLINE bimapM_ #-} -- | As 'bimapM_', but with the structure as the primary argument. biforM_ :: (Bifoldable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m () biforM_ t f g = bimapM_ f g t {-# INLINE biforM_ #-} -- | As 'Data.Bitraversable.bisequenceA', but ignores the results of the actions. bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () bisequenceA_ = bifoldr (*>) (*>) (pure ()) {-# INLINE bisequenceA_ #-} -- | Evaluate each action in the structure from left to right, and ignore the -- results. For a version that doesn't ignore the results, see -- 'Data.Bitraversable.bisequence'. bisequence_ :: (Bifoldable t, Monad m) => t (m a) (m b) -> m () bisequence_ = bifoldr (>>) (>>) (return ()) {-# INLINE bisequence_ #-} -- | The sum of a collection of actions, generalizing 'biconcat'. biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a biasum = bifoldr (<|>) (<|>) empty {-# INLINE biasum #-} -- | The sum of a collection of actions, generalizing 'biconcat'. bimsum :: (Bifoldable t, MonadPlus m) => t (m a) (m a) -> m a bimsum = bifoldr mplus mplus mzero {-# INLINE bimsum #-} -- | Collects the list of elements of a structure, from left to right. biList :: Bifoldable t => t a a -> [a] biList = bifoldr (:) (:) [] {-# INLINE biList #-} -- | Test whether the structure is empty. binull :: Bifoldable t => t a b -> Bool binull = bifoldr (\_ _ -> False) (\_ _ -> False) True {-# INLINE binull #-} -- | Returns the size/length of a finite structure as an 'Int'. bilength :: Bifoldable t => t a b -> Int bilength = bifoldl' (\c _ -> c+1) (\c _ -> c+1) 0 {-# INLINE bilength #-} -- | Does the element occur in the structure? bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool bielem x = biany (== x) (== x) {-# INLINE bielem #-} -- | Reduces a structure of lists to the concatenation of those lists. biconcat :: Bifoldable t => t [a] [a] -> [a] biconcat = bifold {-# INLINE biconcat #-} newtype Max a = Max {getMax :: Maybe a} newtype Min a = Min {getMin :: Maybe a} instance Ord a => Monoid (Max a) where mempty = Max Nothing {-# INLINE mappend #-} m `mappend` Max Nothing = m Max Nothing `mappend` n = n (Max m@(Just x)) `mappend` (Max n@(Just y)) | x >= y = Max m | otherwise = Max n instance Ord a => Monoid (Min a) where mempty = Min Nothing {-# INLINE mappend #-} m `mappend` Min Nothing = m Min Nothing `mappend` n = n (Min m@(Just x)) `mappend` (Min n@(Just y)) | x <= y = Min m | otherwise = Min n -- | The largest element of a non-empty structure. bimaximum :: forall t a. (Bifoldable t, Ord a) => t a a -> a bimaximum = fromMaybe (error "bimaximum: empty structure") . getMax . bifoldMap mj mj where mj = Max #. (Just :: a -> Maybe a) {-# INLINE bimaximum #-} -- | The least element of a non-empty structure. biminimum :: forall t a. (Bifoldable t, Ord a) => t a a -> a biminimum = fromMaybe (error "biminimum: empty structure") . getMin . bifoldMap mj mj where mj = Min #. (Just :: a -> Maybe a) {-# INLINE biminimum #-} -- | The 'bisum' function computes the sum of the numbers of a structure. bisum :: (Bifoldable t, Num a) => t a a -> a bisum = getSum #. bifoldMap Sum Sum {-# INLINE bisum #-} -- | The 'biproduct' function computes the product of the numbers of a -- structure. biproduct :: (Bifoldable t, Num a) => t a a -> a biproduct = getProduct #. bifoldMap Product Product {-# INLINE biproduct #-} -- | Given a means of mapping the elements of a structure to lists, computes the -- concatenation of all such lists in order. biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] biconcatMap = bifoldMap {-# INLINE biconcatMap #-} -- | 'biand' returns the conjunction of a container of Bools. For the -- result to be 'True', the container must be finite; 'False', however, -- results from a 'False' value finitely far from the left end. biand :: Bifoldable t => t Bool Bool -> Bool biand = getAll #. bifoldMap All All {-# INLINE biand #-} -- | 'bior' returns the disjunction of a container of Bools. For the -- result to be 'False', the container must be finite; 'True', however, -- results from a 'True' value finitely far from the left end. bior :: Bifoldable t => t Bool Bool -> Bool bior = getAny #. bifoldMap Any Any {-# INLINE bior #-} -- | Determines whether any element of the structure satisfies the appropriate -- predicate. biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biany p q = getAny #. bifoldMap (Any . p) (Any . q) {-# INLINE biany #-} -- | Determines whether all elements of the structure satisfy the appropriate -- predicate. biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool biall p q = getAll #. bifoldMap (All . p) (All . q) {-# INLINE biall #-} -- | The largest element of a non-empty structure with respect to the -- given comparison function. bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a bimaximumBy cmp = bifoldr1 max' where max' x y = case cmp x y of GT -> x _ -> y {-# INLINE bimaximumBy #-} -- | The least element of a non-empty structure with respect to the -- given comparison function. biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a biminimumBy cmp = bifoldr1 min' where min' x y = case cmp x y of GT -> y _ -> x {-# INLINE biminimumBy #-} -- | 'binotElem' is the negation of 'bielem'. binotElem :: (Bifoldable t, Eq a) => a -> t a a-> Bool binotElem x = not . bielem x {-# INLINE binotElem #-} -- | The 'bifind' function takes a predicate and a structure and returns -- the leftmost element of the structure matching the predicate, or -- 'Nothing' if there is no such element. bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a bifind p = getFirst . bifoldMap finder finder where finder x = First (if p x then Just x else Nothing) {-# INLINE bifind #-} -- See Note [Function coercion] #if MIN_VERSION_base(4,7,0) (#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c) (#.) _f = coerce #else (#.) :: (b -> c) -> (a -> b) -> (a -> c) (#.) _f = unsafeCoerce #endif {-# INLINE (#.) #-} {- Note [Function coercion] ~~~~~~~~~~~~~~~~~~~~~~~~ Several functions here use (#.) instead of (.) to avoid potential efficiency problems relating to #7542. The problem, in a nutshell: If N is a newtype constructor, then N x will always have the same representation as x (something similar applies for a newtype deconstructor). However, if f is a function, N . f = \x -> N (f x) This looks almost the same as f, but the eta expansion lifts it--the lhs could be _|_, but the rhs never is. This can lead to very inefficient code. Thus we steal a technique from Shachaf and Edward Kmett and adapt it to the current (rather clean) setting. Instead of using N . f, we use N .## f, which is just coerce f `asTypeOf` (N . f) That is, we just *pretend* that f has the right type, and thanks to the safety of coerce, the type checker guarantees that nothing really goes wrong. We still have to be a bit careful, though: remember that #. completely ignores the *value* of its left operand. -}