module Data.Semigroup.Bitraversable
( Bitraversable1(..)
, bifoldMap1Default
) where
import Control.Applicative
import Data.Bitraversable
import Data.Bifunctor
import Data.Functor.Apply
import Data.Semigroup
import Data.Semigroup.Bifoldable
import Data.Tagged
class (Bifoldable1 t, Bitraversable t) => Bitraversable1 t where
bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> t a c -> f (t b d)
bitraverse1 f g = bisequence1 . bimap f g
bisequence1 :: Apply f => t (f a) (f b) -> f (t a b)
bisequence1 = bitraverse1 id id
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 708
#endif
#if MIN_VERSION_semigroups(0,16,2)
instance Bitraversable1 Arg where
bitraverse1 f g (Arg a b) = Arg <$> f a <.> g b
#endif
bifoldMap1Default :: (Bitraversable1 t, Semigroup m) => (a -> m) -> (b -> m) -> t a b -> m
bifoldMap1Default f g = getConst . bitraverse1 (Const . f) (Const . g)
instance Bitraversable1 Either where
bitraverse1 f _ (Left a) = Left <$> f a
bitraverse1 _ g (Right b) = Right <$> g b
instance Bitraversable1 (,) where
bitraverse1 f g (a, b) = (,) <$> f a <.> g b
instance Bitraversable1 ((,,) x) where
bitraverse1 f g (x, a, b) = (,,) x <$> f a <.> g b
instance Bitraversable1 ((,,,) x y) where
bitraverse1 f g (x, y, a, b) = (,,,) x y <$> f a <.> g b
instance Bitraversable1 ((,,,,) x y z) where
bitraverse1 f g (x, y, z, a, b) = (,,,,) x y z <$> f a <.> g b
instance Bitraversable1 Const where
bitraverse1 f _ (Const a) = Const <$> f a
instance Bitraversable1 Tagged where
bitraverse1 _ g (Tagged b) = Tagged <$> g b