{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Bifunctor -- Copyright : (C) 2008-2013 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bifunctor ( Bifunctor(..) ) where import Control.Applicative import Data.Tagged import Data.Semigroup -- | Minimal definition either 'bimap' or 'first' and 'second' -- | Formally, the class 'Bifunctor' represents a bifunctor -- from @Hask@ -> @Hask@. -- -- Intuitively it is a bifunctor where both the first and second arguments are covariant. -- -- You can define a 'Bifunctor' by either defining 'bimap' or by defining both -- 'first' and 'second'. -- -- If you supply 'bimap', you should ensure that: -- -- @'bimap' 'id' 'id' ≡ 'id'@ -- -- If you supply 'first' and 'second', ensure: -- -- @ -- 'first' 'id' ≡ 'id' -- 'second' 'id' ≡ 'id' -- @ -- -- If you supply both, you should also ensure: -- -- @'bimap' f g ≡ 'first' f '.' 'second' g@ -- -- These ensure by parametricity: -- -- @ -- 'bimap' (f '.' g) (h '.' i) ≡ 'bimap' f h '.' 'bimap' g i -- 'first' (f '.' g) ≡ 'first' f '.' 'first' g -- 'second' (f '.' g) ≡ 'second' f '.' 'second' g -- @ class Bifunctor p where -- | Map over both arguments at the same time. -- -- @'bimap' f g ≡ 'first' f '.' 'second' g@ bimap :: (a -> b) -> (c -> d) -> p a c -> p b d bimap f g = first f . second g {-# INLINE bimap #-} -- | Map covariantly over the first argument. -- -- @'first' f ≡ 'bimap' f 'id'@ first :: (a -> b) -> p a c -> p b c first f = bimap f id {-# INLINE first #-} -- | Map covariantly over the second argument. -- -- @'second' ≡ 'bimap' 'id'@ second :: (b -> c) -> p a b -> p a c second = bimap id {-# INLINE second #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 708 {-# MINIMAL bimap | first, second #-} #endif instance Bifunctor (,) where bimap f g ~(a, b) = (f a, g b) {-# INLINE bimap #-} #if MIN_VERSION_semigroups(0,16,2) instance Bifunctor Arg where bimap f g (Arg a b) = Arg (f a) (g b) #endif instance Bifunctor ((,,) x) where bimap f g ~(x, a, b) = (x, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,) x y) where bimap f g ~(x, y, a, b) = (x, y, f a, g b) {-# INLINE bimap #-} instance Bifunctor ((,,,,) x y z) where bimap f g ~(x, y, z, a, b) = (x, y, z, f a, g b) {-# INLINE bimap #-} instance Bifunctor Either where bimap f _ (Left a) = Left (f a) bimap _ g (Right b) = Right (g b) {-# INLINE bimap #-} instance Bifunctor Const where bimap f _ (Const a) = Const (f a) {-# INLINE bimap #-} instance Bifunctor Tagged where bimap _ g (Tagged b) = Tagged (g b) {-# INLINE bimap #-}