module Basement.Sized.Block
( BlockN
, MutableBlockN
, toBlockN
, toBlock
, singleton
, replicate
, thaw
, freeze
, index
, indexStatic
, map
, foldl'
, foldr
, cons
, snoc
, elem
, sub
, uncons
, unsnoc
, splitAt
, all
, any
, find
, reverse
, sortBy
, intersperse
) where
import Data.Proxy (Proxy(..))
import Basement.Compat.Base
import Basement.Block (Block, MutableBlock(..), unsafeIndex)
import qualified Basement.Block as B
import Basement.Monad (PrimMonad, PrimState)
import Basement.Nat
import Basement.Types.OffsetSize
import Basement.NormalForm
import Basement.PrimType (PrimType)
import Basement.Types.OffsetSize (CountOf(..), Offset(..), offsetSub)
newtype BlockN (n :: Nat) a = BlockN { unBlock :: Block a } deriving (NormalForm, Eq, Show)
newtype MutableBlockN (n :: Nat) ty st = MutableBlockN { unMBlock :: MutableBlock ty st }
toBlockN :: forall n ty . (PrimType ty, KnownNat n, Countable ty n) => Block ty -> Maybe (BlockN n ty)
toBlockN b
| expected == B.length b = Just (BlockN b)
| otherwise = Nothing
where
expected = toCount @n
toBlock :: BlockN n ty -> Block ty
toBlock = unBlock
singleton :: PrimType ty => ty -> BlockN 1 ty
singleton a = BlockN (B.singleton a)
replicate :: forall n ty . (KnownNat n, Countable ty n, PrimType ty) => ty -> BlockN n ty
replicate a = BlockN (B.replicate (toCount @n) a)
thaw :: (KnownNat n, PrimMonad prim, PrimType ty) => BlockN n ty -> prim (MutableBlockN n ty (PrimState prim))
thaw b = MutableBlockN <$> B.thaw (unBlock b)
freeze :: (PrimMonad prim, PrimType ty, Countable ty n) => MutableBlockN n ty (PrimState prim) -> prim (BlockN n ty)
freeze b = BlockN <$> B.freeze (unMBlock b)
indexStatic :: forall i n ty . (KnownNat i, CmpNat i n ~ 'LT, PrimType ty, Offsetable ty i) => BlockN n ty -> ty
indexStatic b = unsafeIndex (unBlock b) (toOffset @i)
index :: forall i n ty . PrimType ty => BlockN n ty -> Offset ty -> ty
index b ofs = B.index (unBlock b) ofs
map :: (PrimType a, PrimType b) => (a -> b) -> BlockN n a -> BlockN n b
map f b = BlockN (B.map f (unBlock b))
foldl' :: PrimType ty => (a -> ty -> a) -> a -> BlockN n ty -> a
foldl' f acc b = B.foldl' f acc (unBlock b)
foldr :: PrimType ty => (ty -> a -> a) -> a -> BlockN n ty -> a
foldr f acc b = B.foldr f acc (unBlock b)
cons :: PrimType ty => ty -> BlockN n ty -> BlockN (n+1) ty
cons e = BlockN . B.cons e . unBlock
snoc :: PrimType ty => BlockN n ty -> ty -> BlockN (n+1) ty
snoc b = BlockN . B.snoc (unBlock b)
sub :: forall i j n ty
. ( (i <=? n) ~ 'True
, (j <=? n) ~ 'True
, (i <=? j) ~ 'True
, PrimType ty
, KnownNat i
, KnownNat j
, Offsetable ty i
, Offsetable ty j )
=> BlockN n ty
-> BlockN (ji) ty
sub block = BlockN (B.sub (unBlock block) (toOffset @i) (toOffset @j))
uncons :: forall n ty . (CmpNat 0 n ~ 'LT, PrimType ty, KnownNat n, Offsetable ty n)
=> BlockN n ty
-> (ty, BlockN (n1) ty)
uncons b = (indexStatic @0 b, BlockN (B.sub (unBlock b) 1 (toOffset @n)))
unsnoc :: forall n ty . (CmpNat 0 n ~ 'LT, KnownNat n, PrimType ty, Offsetable ty n)
=> BlockN n ty
-> (BlockN (n1) ty, ty)
unsnoc b =
( BlockN (B.sub (unBlock b) 0 (toOffset @n `offsetSub` 1))
, unsafeIndex (unBlock b) (toOffset @n `offsetSub` 1))
splitAt :: forall i n ty . (CmpNat i n ~ 'LT, PrimType ty, KnownNat i, Countable ty i) => BlockN n ty -> (BlockN i ty, BlockN (ni) ty)
splitAt b =
let (left, right) = B.splitAt (toCount @i) (unBlock b)
in (BlockN left, BlockN right)
elem :: PrimType ty => ty -> BlockN n ty -> Bool
elem e b = B.elem e (unBlock b)
all :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Bool
all p b = B.all p (unBlock b)
any :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Bool
any p b = B.any p (unBlock b)
find :: PrimType ty => (ty -> Bool) -> BlockN n ty -> Maybe ty
find p b = B.find p (unBlock b)
reverse :: PrimType ty => BlockN n ty -> BlockN n ty
reverse = BlockN . B.reverse . unBlock
sortBy :: PrimType ty => (ty -> ty -> Ordering) -> BlockN n ty -> BlockN n ty
sortBy f b = BlockN (B.sortBy f (unBlock b))
intersperse :: (CmpNat n 1 ~ 'GT, PrimType ty) => ty -> BlockN n ty -> BlockN (n+n1) ty
intersperse sep b = BlockN (B.intersperse sep (unBlock b))
toCount :: forall n ty . (KnownNat n, Countable ty n) => CountOf ty
toCount = natValCountOf (Proxy @n)
toOffset :: forall n ty . (KnownNat n, Offsetable ty n) => Offset ty
toOffset = natValOffset (Proxy @n)