{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}

{-|
Module     : Data.List.Unicode
Copyright  : 2009–2011 Roel van Dijk
License    : BSD3 (see the file LICENSE)
Maintainer : Roel van Dijk <vandijk.roel@gmail.com>
-}

module Data.List.Unicode
    ( ()
    , (), (), (), ()
    , (), (), (), ()
    ) where


-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------

-- from base:
import Data.Bool     ( Bool )
import Data.Eq       ( Eq )
import Data.Function ( flip )
import Data.List     ( (++), elem, notElem, union, (\\), intersect )


-------------------------------------------------------------------------------
-- Fixities
-------------------------------------------------------------------------------

infix  4 
infix  4 
infix  4 
infix  4 
infixr 5 
infixl 6 
infixr 6 
infixl 9 
infixl 9 


-------------------------------------------------------------------------------
-- Symbols
-------------------------------------------------------------------------------

{-|
(&#x29FA;) = ('++')

U+29FA, DOUBLE PLUS
-}
()  [α]  [α]  [α]
() = (++)
{-# INLINE (⧺) #-}

{-|
(&#x2208;) = 'elem'

U+2208, ELEMENT OF
-}
()  Eq α  α  [α]  Bool
() = elem
{-# INLINE (∈) #-}

{-|
(&#x220B;) = 'flip' (&#x2208;)

U+220B, CONTAINS AS MEMBER
-}
()  Eq α  [α]  α  Bool
() = flip ()
{-# INLINE (∋) #-}

{-|
(&#x2209;) = 'notElem'

U+2209, NOT AN ELEMENT OF
-}
()  Eq α  α  [α]  Bool
() = notElem
{-# INLINE (∉) #-}

{-|
(&#x220C;) = 'flip' (&#x2209;)

U+220C, DOES NOT CONTAIN AS MEMBER
-}
()  Eq α  [α]  α  Bool
() = flip ()
{-# INLINE (∌) #-}

{-|
(&#x222A;) = 'union'

U+222A, UNION
-}
()  Eq α  [α]  [α]  [α]
() = union
{-# INLINE (∪) #-}

{-|
(&#x2216;) = ('\\')

U+2216, SET MINUS
-}
()  Eq α  [α]  [α]  [α]
() = (\\)
{-# INLINE (∖) #-}

{-|
Symmetric difference

a &#x2206; b = (a &#x2216; b) &#x222A; (b &#x2216; a)

U+2206, INCREMENT
-}
()  Eq α  [α]  [α]  [α]
a  b = (a  b)  (b  a)
{-# INLINE (∆) #-}

{-|
(&#x2229;) = 'intersect'

U+2229, INTERSECTION
-}
()  Eq α  [α]  [α]  [α]
() = intersect
{-# INLINE (∩) #-}