
Extensible Neural Networks with Backprop

Justin Le

This write-up is a follow-up to the MNIST tutorial (rendered1 here, and literate haskell2 here). This write-up
itself is available as a literate haskell file3, and also rendered as a pdf4.

The packages involved are:

• deepseq
• hmatrix
• lens
• mnist-idx
• mwc-random
• one-liner-instances
• singletons
• split
• vector

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}

import Control.DeepSeq
import Control.Exception
import Control.Lens hiding ((<.>))
import Control.Monad
import Control.Monad.IO.Class
import Control.Monad.Primitive
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.State
import Data.Bitraversable

1https://github.com/mstksg/backprop/blob/master/renders/backprop-mnist.pdf
2https://github.com/mstksg/backprop/blob/master/samples/backprop-mnist.lhs
3https://github.com/mstksg/backprop/blob/master/samples/extensible-neural.lhs
4https://github.com/mstksg/backprop/blob/master/renders/extensible-neural.pdf

1

https://github.com/mstksg/backprop/blob/master/renders/backprop-mnist.pdf
https://github.com/mstksg/backprop/blob/master/samples/backprop-mnist.lhs
https://github.com/mstksg/backprop/blob/master/samples/extensible-neural.lhs
https://github.com/mstksg/backprop/blob/master/renders/extensible-neural.pdf


import Data.Foldable
import Data.IDX
import Data.Kind
import Data.List.Split
import Data.Singletons
import Data.Singletons.Prelude
import Data.Singletons.TypeLits
import Data.Time.Clock
import Data.Traversable
import Data.Tuple
import GHC.Generics (Generic)
import Numeric.Backprop
import Numeric.LinearAlgebra.Static
import Numeric.OneLiner
import Text.Printf
import qualified Data.Vector as V
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Unboxed as VU
import qualified Numeric.LinearAlgebra as HM
import qualified System.Random.MWC as MWC
import qualified System.Random.MWC.Distributions as MWC

Introduction

The backprop5 library lets us manipulate our values in a natural way. We write the function to compute our
result, and the library then automatically finds the gradient of that function, which we can use for gradient
descent.

In the last post, we looked at using a fixed-structure neural network. However, in this blog series6, I discuss
a system of extensible neural networks that can be chained and composed.

One issue, however, in naively translating the implementations, is that we normally run the network by
pattern matching on each layer. However, we cannot directly pattern match on BVars.

We could get around it by being smart with prisms and ˆˆ?, to extract a “Maybe BVar”. However, we can do
better! This is because the shape of a Net i hs o is known already at compile-time, so there is no need for
runtime checks like prisms and ˆˆ?.

Instead, we can just directly use lenses, since we know exactly what constructor will be present! We can use
singletons to determine which constructor is present, and so always just directly use lenses without any
runtime nondeterminism.

Types

First, our types:

data Layer i o =
Layer { _lWeights :: !(L o i)

, _lBiases :: !(R o)
}

5http://hackage.haskell.org/package/backprop
6https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html

2

http://hackage.haskell.org/package/backprop
https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html


deriving (Show, Generic)

instance NFData (Layer i o)
makeLenses ''Layer

data Net :: Nat -> [Nat] -> Nat -> Type where
NO :: !(Layer i o) -> Net i '[] o
(:~) :: !(Layer i h) -> !(Net h hs o) -> Net i (h ': hs) o

Unfortunately, we can’t automatically generate lenses for GADTs, so we have to make them by hand.[ˆpoly]

with type safety via paraemtric polymorphism.

_NO :: Lens (Net i '[] o) (Net i' '[] o')
(Layer i o ) (Layer i' o' )

_NO f (NO l) = NO <$> f l

_NIL :: Lens (Net i (h ': hs) o) (Net i' (h ': hs) o)
(Layer i h ) (Layer i' h )

_NIL f (l :~ n) = (:~ n) <$> f l

_NIN :: Lens (Net i (h ': hs) o) (Net i (h ': hs') o')
(Net h hs o) (Net h hs' o')

_NIN f (l :~ n) = (l :~) <$> f n

You can read _NO as:

_NO :: Lens' (Net i '[] o) (Layer i o)

A lens into a single-layer network, and

_NIL :: Lens' (Net i (h ': hs) o) (Layer i h )
_NIN :: Lens' (Net i (h ': hs) o) (Net h hs o)

Lenses into a multiple-layer network, getting the first layer and the tail of the network.

If we pattern match on Sing hs, we can always determine exactly which lenses we can use, and so never
fumble around with prisms or nondeterminism.

Running the network

Here’s the meat of process, then: specifying how to run the network. We re-use our BVar-based combinators
defined in the last write-up:
runLayer

:: (KnownNat i, KnownNat o, Reifies s W)
=> BVar s (Layer i o)
-> BVar s (R i)
-> BVar s (R o)

runLayer l x = (l ^^. lWeights) #>! x + (l ^^. lBiases)
{-# INLINE runLayer #-}

For runNetwork, we pattern match on hs using singletons, so we always know exactly what type of
network we have:

runNetwork
:: (KnownNat i, KnownNat o, Reifies s W)

3



=> BVar s (Net i hs o)
-> Sing hs
-> BVar s (R i)
-> BVar s (R o)

runNetwork n = \case
SNil -> softMax . runLayer (n ^^. _NO)
SCons SNat hs -> withSingI hs (runNetwork (n ^^. _NIN) hs)

. logistic

. runLayer (n ^^. _NIL)
{-# INLINE runNetwork #-}

The rest of it is the same as before.
netErr

:: (KnownNat i, KnownNat o, SingI hs, Reifies s W)
=> R i
-> R o
-> BVar s (Net i hs o)
-> BVar s Double

netErr x targ n = crossEntropy targ (runNetwork n sing (constVar x))
{-# INLINE netErr #-}

trainStep
:: forall i hs o. (KnownNat i, KnownNat o, SingI hs)
=> Double -- ^ learning rate
-> R i -- ^ input
-> R o -- ^ target
-> Net i hs o -- ^ initial network
-> Net i hs o

trainStep r !x !targ !n = n - realToFrac r * gradBP (netErr x targ) n
{-# INLINE trainStep #-}

trainList
:: (KnownNat i, SingI hs, KnownNat o)
=> Double -- ^ learning rate
-> [(R i, R o)] -- ^ input and target pairs
-> Net i hs o -- ^ initial network
-> Net i hs o

trainList r = flip $ foldl' (\n (x,y) -> trainStep r x y n)
{-# INLINE trainList #-}

testNet
:: forall i hs o. (KnownNat i, KnownNat o, SingI hs)
=> [(R i, R o)]
-> Net i hs o
-> Double

testNet xs n = sum (map (uncurry test) xs) / fromIntegral (length xs)
where

test :: R i -> R o -> Double -- test if the max index is correct
test x (extract->t)

| HM.maxIndex t == HM.maxIndex (extract r) = 1
| otherwise = 0

where
r :: R o

4



r = evalBP (\n' -> runNetwork n' sing (constVar x)) n

And that’s it!

Running

Everything here is the same as before, except now we can dynamically pick the network size. Here we pick
'[300,100] for the hidden layer sizes.

main :: IO ()
main = MWC.withSystemRandom $ \g -> do

Just train <- loadMNIST "data/train-images-idx3-ubyte" "data/train-labels-idx1-ubyte"
Just test <- loadMNIST "data/t10k-images-idx3-ubyte" "data/t10k-labels-idx1-ubyte"
putStrLn "Loaded data."
net0 <- MWC.uniformR @(Net 784 '[300,100] 10) (-0.5, 0.5) g
flip evalStateT net0 . forM_ [1..] $ \e -> do

train' <- liftIO . fmap V.toList $ MWC.uniformShuffle (V.fromList train) g
liftIO $ printf "[Epoch %d]\n" (e :: Int)

forM_ ([1..] `zip` chunksOf batch train') $ \(b, chnk) -> StateT $ \n0 -> do
printf "(Batch %d)\n" (b :: Int)

t0 <- getCurrentTime
n' <- evaluate . force $ trainList rate chnk n0
t1 <- getCurrentTime
printf "Trained on %d points in %s.\n" batch (show (t1 `diffUTCTime` t0))

let trainScore = testNet chnk n'
testScore = testNet test n'

printf "Training error: %.2f%%\n" ((1 - trainScore) * 100)
printf "Validation error: %.2f%%\n" ((1 - testScore ) * 100)

return ((), n')
where

rate = 0.02
batch = 5000

Looking Forward

One common thing people might do is want to be able to mix different types of layers. This could also be
easily encoded as different constructors in Layer, and so runLayer will now be different depending on
what constructor is present.

In this case, we can either:

1. Have a different indexed type for layers, so that we can always know exactly what layer is involved, so
we don’t have to runtime pattern match:

data LayerType = FullyConnected | Convolutional

data Layer :: LayerType -> Nat -> Nat -> Type where

5



LayerFC :: .... -> Layer 'FullyConnected i o
LayerC :: .... -> Layer 'Convolutional i o

We would then have runLayer take Sing (t :: LayerType), so we can again use ˆˆ. and
directly pattern match.

2. Use a typeclass-based approach, so users can add their own layer types. In this situation, layer types
would all be different types, and running them would be a typeclass method that would give our BVar
s (Layer i o) -> BVar s (R i) -> BVar s (R o) operation as a typeclass method.

class Layer (l :: Nat -> Nat -> Type) where
runLayer

:: forall s. Reifies s W
=> BVar s (l i o)
-> BVar s (R i)
-> BVar s (R o)

In all cases, it shouldn’t be much more cognitive overhead to use backprop to build your neural network
framework!

And, remember that evalBP (directly running the function) introduces virtually zero overhead, so if you
only provided BVar functions, you could easily get the original non-BVar functions with evalBP without
any loss.

What now?

Ready to start? Check out the docs for the Numeric.Backprop7 module for the full technical specs, and find
more examples and updates at the github repo8!

Internals

That’s it for the post! Now for the internal plumbing :)

loadMNIST
:: FilePath
-> FilePath
-> IO (Maybe [(R 784, R 10)])

loadMNIST fpI fpL = runMaybeT $ do
i <- MaybeT $ decodeIDXFile fpI
l <- MaybeT $ decodeIDXLabelsFile fpL
d <- MaybeT . return $ labeledIntData l i
r <- MaybeT . return $ for d (bitraverse mkImage mkLabel . swap)
liftIO . evaluate $ force r

where
mkImage :: VU.Vector Int -> Maybe (R 784)
mkImage = create . VG.convert . VG.map (\i -> fromIntegral i / 255)
mkLabel :: Int -> Maybe (R 10)
mkLabel n = create $ HM.build 10 (\i -> if round i == n then 1 else 0)

7http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
8https://github.com/mstksg/backprop

6

http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
https://github.com/mstksg/backprop


HMatrix Operations

infixr 8 #>!
(#>!)

:: (KnownNat m, KnownNat n, Reifies s W)
=> BVar s (L m n)
-> BVar s (R n)
-> BVar s (R m)

(#>!) = liftOp2 . op2 $ \m v ->
( m #> v, \g -> (g `outer` v, tr m #> g) )

infixr 8 <.>!
(<.>!)

:: (KnownNat n, Reifies s W)
=> BVar s (R n)
-> BVar s (R n)
-> BVar s Double

(<.>!) = liftOp2 . op2 $ \x y ->
( x <.> y, \g -> (konst g * y, x * konst g)
)

konst'
:: (KnownNat n, Reifies s W)
=> BVar s Double
-> BVar s (R n)

konst' = liftOp1 . op1 $ \c -> (konst c, HM.sumElements . extract)

sumElements'
:: (KnownNat n, Reifies s W)
=> BVar s (R n)
-> BVar s Double

sumElements' = liftOp1 . op1 $ \x -> (HM.sumElements (extract x), konst)

softMax :: (KnownNat n, Reifies s W) => BVar s (R n) -> BVar s (R n)
softMax x = konst' (1 / sumElements' expx) * expx

where
expx = exp x

{-# INLINE softMax #-}

crossEntropy
:: (KnownNat n, Reifies s W)
=> R n
-> BVar s (R n)
-> BVar s Double

crossEntropy targ res = -(log res <.>! constVar targ)
{-# INLINE crossEntropy #-}

logistic :: Floating a => a -> a
logistic x = 1 / (1 + exp (-x))
{-# INLINE logistic #-}

7



Instances

instance (KnownNat i, KnownNat o) => Num (Layer i o) where
(+) = gPlus
(-) = gMinus
(*) = gTimes
negate = gNegate
abs = gAbs
signum = gSignum
fromInteger = gFromInteger

instance (KnownNat i, KnownNat o) => Fractional (Layer i o) where
(/) = gDivide
recip = gRecip
fromRational = gFromRational

liftNet0
:: forall i hs o. (KnownNat i, KnownNat o)
=> (forall m n. (KnownNat m, KnownNat n) => Layer m n)
-> Sing hs
-> Net i hs o

liftNet0 x = go
where

go :: forall w ws. KnownNat w => Sing ws -> Net w ws o
go = \case

SNil -> NO x
SCons SNat hs -> x :~ go hs

liftNet1
:: forall i hs o. (KnownNat i, KnownNat o)
=> (forall m n. (KnownNat m, KnownNat n)

=> Layer m n
-> Layer m n

)
-> Sing hs
-> Net i hs o
-> Net i hs o

liftNet1 f = go
where

go :: forall w ws. KnownNat w
=> Sing ws
-> Net w ws o
-> Net w ws o

go = \case
SNil -> \case

NO x -> NO (f x)
SCons SNat hs -> \case

x :~ xs -> f x :~ go hs xs

liftNet2
:: forall i hs o. (KnownNat i, KnownNat o)
=> (forall m n. (KnownNat m, KnownNat n)

8



=> Layer m n
-> Layer m n
-> Layer m n

)
-> Sing hs
-> Net i hs o
-> Net i hs o
-> Net i hs o

liftNet2 f = go
where

go :: forall w ws. KnownNat w
=> Sing ws
-> Net w ws o
-> Net w ws o
-> Net w ws o

go = \case
SNil -> \case

NO x -> \case
NO y -> NO (f x y)

SCons SNat hs -> \case
x :~ xs -> \case
y :~ ys -> f x y :~ go hs xs ys

instance ( KnownNat i
, KnownNat o
, SingI hs
)

=> Num (Net i hs o) where
(+) = liftNet2 (+) sing
(-) = liftNet2 (-) sing
(*) = liftNet2 (*) sing
negate = liftNet1 negate sing
abs = liftNet1 abs sing
signum = liftNet1 signum sing
fromInteger x = liftNet0 (fromInteger x) sing

instance ( KnownNat i
, KnownNat o
, SingI hs
)

=> Fractional (Net i hs o) where
(/) = liftNet2 (/) sing
recip = liftNet1 negate sing
fromRational x = liftNet0 (fromRational x) sing

instance KnownNat n => MWC.Variate (R n) where
uniform g = randomVector <$> MWC.uniform g <*> pure Uniform
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat m, KnownNat n) => MWC.Variate (L m n) where
uniform g = uniformSample <$> MWC.uniform g <*> pure 0 <*> pure 1
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

9



instance (KnownNat i, KnownNat o) => MWC.Variate (Layer i o) where
uniform g = Layer <$> MWC.uniform g <*> MWC.uniform g
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance ( KnownNat i
, KnownNat o
, SingI hs
)

=> MWC.Variate (Net i hs o) where
uniform :: forall m. PrimMonad m => MWC.Gen (PrimState m) -> m (Net i hs o)
uniform g = go sing

where
go :: forall w ws. KnownNat w => Sing ws -> m (Net w ws o)
go = \case
SNil -> NO <$> MWC.uniform g
SCons SNat hs -> (:~) <$> MWC.uniform g <*> go hs

uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance NFData (Net i hs o) where
rnf = \case

NO l -> rnf l
x :~ xs -> rnf x `seq` rnf xs

10


	Introduction
	Types
	Running the network
	Running
	Looking Forward
	What now?

	Internals
	HMatrix Operations
	Instances


