{-# LANGUAGE BangPatterns, CPP, OverloadedStrings #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} module Aeson ( aeson , value' ) where import Data.ByteString.Builder (Builder, byteString, toLazyByteString, charUtf8, word8) #if !MIN_VERSION_base(4,8,0) import Control.Applicative ((*>), (<$>), (<*), pure) import Data.Monoid (mappend, mempty) #endif import Common (pathTo) import Control.Applicative (liftA2) import Control.DeepSeq (NFData(..)) import Control.Monad (forM) import Data.Attoparsec.ByteString.Char8 (Parser, char, endOfInput, scientific, skipSpace, string) import Data.Bits ((.|.), shiftL) import Data.ByteString (ByteString) import Data.Char (chr) import Data.List (sort) import Data.Scientific (Scientific) import Data.Text (Text) import Data.Text.Encoding (decodeUtf8') import Data.Vector as Vector (Vector, foldl', fromList) import Data.Word (Word8) import System.Directory (getDirectoryContents) import System.FilePath ((), dropExtension) import qualified Data.Attoparsec.ByteString as A import qualified Data.Attoparsec.Lazy as L import qualified Data.Attoparsec.Zepto as Z import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Unsafe as B import qualified Data.HashMap.Strict as H import Criterion.Main #define BACKSLASH 92 #define CLOSE_CURLY 125 #define CLOSE_SQUARE 93 #define COMMA 44 #define DOUBLE_QUOTE 34 #define OPEN_CURLY 123 #define OPEN_SQUARE 91 #define C_0 48 #define C_9 57 #define C_A 65 #define C_F 70 #define C_a 97 #define C_f 102 #define C_n 110 #define C_t 116 data Result a = Error String | Success a deriving (Eq, Show) -- | A JSON \"object\" (key\/value map). type Object = H.HashMap Text Value -- | A JSON \"array\" (sequence). type Array = Vector Value -- | A JSON value represented as a Haskell value. data Value = Object !Object | Array !Array | String !Text | Number !Scientific | Bool !Bool | Null deriving (Eq, Show) instance NFData Value where rnf (Object o) = rnf o rnf (Array a) = Vector.foldl' (\x y -> rnf y `seq` x) () a rnf (String s) = rnf s rnf (Number n) = rnf n rnf (Bool b) = rnf b rnf Null = () -- | Parse a top-level JSON value. This must be either an object or -- an array, per RFC 4627. -- -- The conversion of a parsed value to a Haskell value is deferred -- until the Haskell value is needed. This may improve performance if -- only a subset of the results of conversions are needed, but at a -- cost in thunk allocation. json :: Parser Value json = json_ object_ array_ -- | Parse a top-level JSON value. This must be either an object or -- an array, per RFC 4627. -- -- This is a strict version of 'json' which avoids building up thunks -- during parsing; it performs all conversions immediately. Prefer -- this version if most of the JSON data needs to be accessed. json' :: Parser Value json' = json_ object_' array_' json_ :: Parser Value -> Parser Value -> Parser Value json_ obj ary = do w <- skipSpace *> A.satisfy (\w -> w == OPEN_CURLY || w == OPEN_SQUARE) if w == OPEN_CURLY then obj else ary {-# INLINE json_ #-} object_ :: Parser Value object_ = {-# SCC "object_" #-} Object <$> objectValues jstring value object_' :: Parser Value object_' = {-# SCC "object_'" #-} do !vals <- objectValues jstring' value' return (Object vals) where jstring' = do !s <- jstring return s objectValues :: Parser Text -> Parser Value -> Parser (H.HashMap Text Value) objectValues str val = do skipSpace let pair = liftA2 (,) (str <* skipSpace) (char ':' *> skipSpace *> val) H.fromList <$> commaSeparated pair CLOSE_CURLY {-# INLINE objectValues #-} array_ :: Parser Value array_ = {-# SCC "array_" #-} Array <$> arrayValues value array_' :: Parser Value array_' = {-# SCC "array_'" #-} do !vals <- arrayValues value' return (Array vals) commaSeparated :: Parser a -> Word8 -> Parser [a] commaSeparated item endByte = do w <- A.peekWord8' if w == endByte then A.anyWord8 >> return [] else loop where loop = do v <- item <* skipSpace ch <- A.satisfy $ \w -> w == COMMA || w == endByte if ch == COMMA then skipSpace >> (v:) <$> loop else return [v] {-# INLINE commaSeparated #-} arrayValues :: Parser Value -> Parser (Vector Value) arrayValues val = do skipSpace Vector.fromList <$> commaSeparated val CLOSE_SQUARE {-# INLINE arrayValues #-} -- | Parse any JSON value. You should usually 'json' in preference to -- this function, as this function relaxes the object-or-array -- requirement of RFC 4627. -- -- In particular, be careful in using this function if you think your -- code might interoperate with Javascript. A naïve Javascript -- library that parses JSON data using @eval@ is vulnerable to attack -- unless the encoded data represents an object or an array. JSON -- implementations in other languages conform to that same restriction -- to preserve interoperability and security. value :: Parser Value value = do w <- A.peekWord8' case w of DOUBLE_QUOTE -> A.anyWord8 *> (String <$> jstring_) OPEN_CURLY -> A.anyWord8 *> object_ OPEN_SQUARE -> A.anyWord8 *> array_ C_f -> string "false" *> pure (Bool False) C_t -> string "true" *> pure (Bool True) C_n -> string "null" *> pure Null _ | w >= 48 && w <= 57 || w == 45 -> Number <$> scientific | otherwise -> fail "not a valid json value" -- | Strict version of 'value'. See also 'json''. value' :: Parser Value value' = do w <- A.peekWord8' case w of DOUBLE_QUOTE -> do !s <- A.anyWord8 *> jstring_ return (String s) OPEN_CURLY -> A.anyWord8 *> object_' OPEN_SQUARE -> A.anyWord8 *> array_' C_f -> string "false" *> pure (Bool False) C_t -> string "true" *> pure (Bool True) C_n -> string "null" *> pure Null _ | w >= 48 && w <= 57 || w == 45 -> do !n <- scientific return (Number n) | otherwise -> fail "not a valid json value" -- | Parse a quoted JSON string. jstring :: Parser Text jstring = A.word8 DOUBLE_QUOTE *> jstring_ -- | Parse a string without a leading quote. jstring_ :: Parser Text jstring_ = {-# SCC "jstring_" #-} do s <- A.scan False $ \s c -> if s then Just False else if c == DOUBLE_QUOTE then Nothing else Just (c == BACKSLASH) _ <- A.word8 DOUBLE_QUOTE s1 <- if BACKSLASH `B.elem` s then case Z.parse unescape s of Right r -> return r Left err -> fail err else return s case decodeUtf8' s1 of Right r -> return r Left err -> fail $ show err {-# INLINE jstring_ #-} unescape :: Z.Parser ByteString unescape = toByteString <$> go mempty where go acc = do h <- Z.takeWhile (/=BACKSLASH) let rest = do start <- Z.take 2 let !slash = B.unsafeHead start !t = B.unsafeIndex start 1 escape = case B.findIndex (==t) "\"\\/ntbrfu" of Just i -> i _ -> 255 if slash /= BACKSLASH || escape == 255 then fail "invalid JSON escape sequence" else do let cont m = go (acc `mappend` byteString h `mappend` m) {-# INLINE cont #-} if t /= 117 -- 'u' then cont (word8 (B.unsafeIndex mapping escape)) else do a <- hexQuad if a < 0xd800 || a > 0xdfff then cont (charUtf8 (chr a)) else do b <- Z.string "\\u" *> hexQuad if a <= 0xdbff && b >= 0xdc00 && b <= 0xdfff then let !c = ((a - 0xd800) `shiftL` 10) + (b - 0xdc00) + 0x10000 in cont (charUtf8 (chr c)) else fail "invalid UTF-16 surrogates" done <- Z.atEnd if done then return (acc `mappend` byteString h) else rest mapping = "\"\\/\n\t\b\r\f" hexQuad :: Z.Parser Int hexQuad = do s <- Z.take 4 let hex n | w >= C_0 && w <= C_9 = w - C_0 | w >= C_a && w <= C_f = w - 87 | w >= C_A && w <= C_F = w - 55 | otherwise = 255 where w = fromIntegral $ B.unsafeIndex s n a = hex 0; b = hex 1; c = hex 2; d = hex 3 if (a .|. b .|. c .|. d) /= 255 then return $! d .|. (c `shiftL` 4) .|. (b `shiftL` 8) .|. (a `shiftL` 12) else fail "invalid hex escape" decodeWith :: Parser Value -> (Value -> Result a) -> L.ByteString -> Maybe a decodeWith p to s = case L.parse p s of L.Done _ v -> case to v of Success a -> Just a _ -> Nothing _ -> Nothing {-# INLINE decodeWith #-} decodeStrictWith :: Parser Value -> (Value -> Result a) -> B.ByteString -> Maybe a decodeStrictWith p to s = case either Error to (A.parseOnly p s) of Success a -> Just a Error _ -> Nothing {-# INLINE decodeStrictWith #-} eitherDecodeWith :: Parser Value -> (Value -> Result a) -> L.ByteString -> Either String a eitherDecodeWith p to s = case L.parse p s of L.Done _ v -> case to v of Success a -> Right a Error msg -> Left msg L.Fail _ _ msg -> Left msg {-# INLINE eitherDecodeWith #-} eitherDecodeStrictWith :: Parser Value -> (Value -> Result a) -> B.ByteString -> Either String a eitherDecodeStrictWith p to s = case either Error to (A.parseOnly p s) of Success a -> Right a Error msg -> Left msg {-# INLINE eitherDecodeStrictWith #-} -- $lazy -- -- The 'json' and 'value' parsers decouple identification from -- conversion. Identification occurs immediately (so that an invalid -- JSON document can be rejected as early as possible), but conversion -- to a Haskell value is deferred until that value is needed. -- -- This decoupling can be time-efficient if only a smallish subset of -- elements in a JSON value need to be inspected, since the cost of -- conversion is zero for uninspected elements. The trade off is an -- increase in memory usage, due to allocation of thunks for values -- that have not yet been converted. -- $strict -- -- The 'json'' and 'value'' parsers combine identification with -- conversion. They consume more CPU cycles up front, but have a -- smaller memory footprint. -- | Parse a top-level JSON value followed by optional whitespace and -- end-of-input. See also: 'json'. jsonEOF :: Parser Value jsonEOF = json <* skipSpace <* endOfInput -- | Parse a top-level JSON value followed by optional whitespace and -- end-of-input. See also: 'json''. jsonEOF' :: Parser Value jsonEOF' = json' <* skipSpace <* endOfInput toByteString :: Builder -> ByteString toByteString = L.toStrict . toLazyByteString {-# INLINE toByteString #-} aeson :: IO Benchmark aeson = do path <- pathTo "json-data" names <- sort . filter (`notElem` [".", ".."]) <$> getDirectoryContents path benches <- forM names $ \name -> do bs <- B.readFile (path name) return . bench (dropExtension name) $ nf (A.parseOnly jsonEOF') bs return $ bgroup "aeson" benches