/* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ /*For memory wiping*/ #ifdef _MSC_VER #include #include /* For SecureZeroMemory */ #endif #if defined __STDC_LIB_EXT1__ #define __STDC_WANT_LIB_EXT1__ 1 #endif #define VC_GE_2005(version) (version >= 1400) #include #include #include #include "core.h" #include "thread.h" #include "blake2/blake2.h" #include "blake2/blake2-impl.h" #ifdef GENKAT #include "genkat.h" #endif #if defined(__clang__) #if __has_attribute(optnone) #define NOT_OPTIMIZED __attribute__((optnone)) #endif #elif defined(__GNUC__) #define GCC_VERSION \ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) #if GCC_VERSION >= 40400 #define NOT_OPTIMIZED __attribute__((optimize("O0"))) #endif #endif #ifndef NOT_OPTIMIZED #define NOT_OPTIMIZED #endif /***************Instance and Position constructors**********/ void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); } void copy_block(block *dst, const block *src) { memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK); } void xor_block(block *dst, const block *src) { int i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { dst->v[i] ^= src->v[i]; } } static void load_block(block *dst, const void *input) { unsigned i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i])); } } static void store_block(void *output, const block *src) { unsigned i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]); } } /***************Memory functions*****************/ int allocate_memory(const argon2_context *context, uint8_t **memory, size_t num, size_t size) { size_t memory_size = num*size; if (memory == NULL) { return ARGON2_MEMORY_ALLOCATION_ERROR; } /* 1. Check for multiplication overflow */ if (size != 0 && memory_size / size != num) { return ARGON2_MEMORY_ALLOCATION_ERROR; } /* 2. Try to allocate with appropriate allocator */ if (context->allocate_cbk) { (context->allocate_cbk)(memory, memory_size); } else { *memory = malloc(memory_size); } if (*memory == NULL) { return ARGON2_MEMORY_ALLOCATION_ERROR; } return ARGON2_OK; } void free_memory(const argon2_context *context, uint8_t *memory, size_t num, size_t size) { size_t memory_size = num*size; clear_internal_memory(memory, memory_size); if (context->free_cbk) { (context->free_cbk)(memory, memory_size); } else { free(memory); } } void NOT_OPTIMIZED secure_wipe_memory(void *v, size_t n) { #if defined(_MSC_VER) && VC_GE_2005(_MSC_VER) SecureZeroMemory(v, n); #elif defined memset_s memset_s(v, n, 0, n); #elif defined(__OpenBSD__) explicit_bzero(v, n); #else static void *(*const volatile memset_sec)(void *, int, size_t) = &memset; memset_sec(v, 0, n); #endif } /* Memory clear flag defaults to true. */ int FLAG_clear_internal_memory = 1; void clear_internal_memory(void *v, size_t n) { if (FLAG_clear_internal_memory && v) { secure_wipe_memory(v, n); } } void finalize(const argon2_context *context, argon2_instance_t *instance) { if (context != NULL && instance != NULL) { block blockhash; uint32_t l; copy_block(&blockhash, instance->memory + instance->lane_length - 1); /* XOR the last blocks */ for (l = 1; l < instance->lanes; ++l) { uint32_t last_block_in_lane = l * instance->lane_length + (instance->lane_length - 1); xor_block(&blockhash, instance->memory + last_block_in_lane); } /* Hash the result */ { uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE]; store_block(blockhash_bytes, &blockhash); blake2b_long(context->out, context->outlen, blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash and blockhash_bytes */ clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE); clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); } #ifdef GENKAT print_tag(context->out, context->outlen); #endif free_memory(context, (uint8_t *)instance->memory, instance->memory_blocks, sizeof(block)); } } uint32_t index_alpha(const argon2_instance_t *instance, const argon2_position_t *position, uint32_t pseudo_rand, int same_lane) { /* * Pass 0: * This lane : all already finished segments plus already constructed * blocks in this segment * Other lanes : all already finished segments * Pass 1+: * This lane : (SYNC_POINTS - 1) last segments plus already constructed * blocks in this segment * Other lanes : (SYNC_POINTS - 1) last segments */ uint32_t reference_area_size; uint64_t relative_position; uint32_t start_position, absolute_position; if (0 == position->pass) { /* First pass */ if (0 == position->slice) { /* First slice */ reference_area_size = position->index - 1; /* all but the previous */ } else { if (same_lane) { /* The same lane => add current segment */ reference_area_size = position->slice * instance->segment_length + position->index - 1; } else { reference_area_size = position->slice * instance->segment_length + ((position->index == 0) ? (-1) : 0); } } } else { /* Second pass */ if (same_lane) { reference_area_size = instance->lane_length - instance->segment_length + position->index - 1; } else { reference_area_size = instance->lane_length - instance->segment_length + ((position->index == 0) ? (-1) : 0); } } /* 1.2.4. Mapping pseudo_rand to 0.. and produce * relative position */ relative_position = pseudo_rand; relative_position = relative_position * relative_position >> 32; relative_position = reference_area_size - 1 - (reference_area_size * relative_position >> 32); /* 1.2.5 Computing starting position */ start_position = 0; if (0 != position->pass) { start_position = (position->slice == ARGON2_SYNC_POINTS - 1) ? 0 : (position->slice + 1) * instance->segment_length; } /* 1.2.6. Computing absolute position */ absolute_position = (start_position + relative_position) % instance->lane_length; /* absolute position */ return absolute_position; } /* Single-threaded version for p=1 case */ static int fill_memory_blocks_st(argon2_instance_t *instance) { uint32_t r, s, l; for (r = 0; r < instance->passes; ++r) { for (s = 0; s < ARGON2_SYNC_POINTS; ++s) { for (l = 0; l < instance->lanes; ++l) { argon2_position_t position = {r, l, (uint8_t)s, 0}; fill_segment(instance, position); } } #ifdef GENKAT internal_kat(instance, r); /* Print all memory blocks */ #endif } return ARGON2_OK; } #if !defined(ARGON2_NO_THREADS) #ifdef _WIN32 static unsigned __stdcall fill_segment_thr(void *thread_data) #else static void *fill_segment_thr(void *thread_data) #endif { argon2_thread_data *my_data = thread_data; fill_segment(my_data->instance_ptr, my_data->pos); argon2_thread_exit(); return 0; } /* Multi-threaded version for p > 1 case */ static int fill_memory_blocks_mt(argon2_instance_t *instance) { uint32_t r, s; argon2_thread_handle_t *thread = NULL; argon2_thread_data *thr_data = NULL; int rc = ARGON2_OK; /* 1. Allocating space for threads */ thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t)); if (thread == NULL) { rc = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } thr_data = calloc(instance->lanes, sizeof(argon2_thread_data)); if (thr_data == NULL) { rc = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } for (r = 0; r < instance->passes; ++r) { for (s = 0; s < ARGON2_SYNC_POINTS; ++s) { uint32_t l; /* 2. Calling threads */ for (l = 0; l < instance->lanes; ++l) { argon2_position_t position; /* 2.1 Join a thread if limit is exceeded */ if (l >= instance->threads) { if (argon2_thread_join(thread[l - instance->threads])) { rc = ARGON2_THREAD_FAIL; goto fail; } } /* 2.2 Create thread */ position.pass = r; position.lane = l; position.slice = (uint8_t)s; position.index = 0; thr_data[l].instance_ptr = instance; /* preparing the thread input */ memcpy(&(thr_data[l].pos), &position, sizeof(argon2_position_t)); if (argon2_thread_create(&thread[l], &fill_segment_thr, (void *)&thr_data[l])) { rc = ARGON2_THREAD_FAIL; goto fail; } /* fill_segment(instance, position); */ /*Non-thread equivalent of the lines above */ } /* 3. Joining remaining threads */ for (l = instance->lanes - instance->threads; l < instance->lanes; ++l) { if (argon2_thread_join(thread[l])) { rc = ARGON2_THREAD_FAIL; goto fail; } } } #ifdef GENKAT internal_kat(instance, r); /* Print all memory blocks */ #endif } fail: if (thread != NULL) { free(thread); } if (thr_data != NULL) { free(thr_data); } return rc; } #endif /* ARGON2_NO_THREADS */ int fill_memory_blocks(argon2_instance_t *instance) { if (instance == NULL || instance->lanes == 0) { return ARGON2_INCORRECT_PARAMETER; } #if defined(ARGON2_NO_THREADS) return fill_memory_blocks_st(instance); #else return instance->threads == 1 ? fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance); #endif } int validate_inputs(const argon2_context *context) { if (NULL == context) { return ARGON2_INCORRECT_PARAMETER; } if (NULL == context->out) { return ARGON2_OUTPUT_PTR_NULL; } /* Validate output length */ if (ARGON2_MIN_OUTLEN > context->outlen) { return ARGON2_OUTPUT_TOO_SHORT; } if (ARGON2_MAX_OUTLEN < context->outlen) { return ARGON2_OUTPUT_TOO_LONG; } /* Validate password (required param) */ if (NULL == context->pwd) { if (0 != context->pwdlen) { return ARGON2_PWD_PTR_MISMATCH; } } if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) { return ARGON2_PWD_TOO_SHORT; } if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) { return ARGON2_PWD_TOO_LONG; } /* Validate salt (required param) */ if (NULL == context->salt) { if (0 != context->saltlen) { return ARGON2_SALT_PTR_MISMATCH; } } if (ARGON2_MIN_SALT_LENGTH > context->saltlen) { return ARGON2_SALT_TOO_SHORT; } if (ARGON2_MAX_SALT_LENGTH < context->saltlen) { return ARGON2_SALT_TOO_LONG; } /* Validate secret (optional param) */ if (NULL == context->secret) { if (0 != context->secretlen) { return ARGON2_SECRET_PTR_MISMATCH; } } else { if (ARGON2_MIN_SECRET > context->secretlen) { return ARGON2_SECRET_TOO_SHORT; } if (ARGON2_MAX_SECRET < context->secretlen) { return ARGON2_SECRET_TOO_LONG; } } /* Validate associated data (optional param) */ if (NULL == context->ad) { if (0 != context->adlen) { return ARGON2_AD_PTR_MISMATCH; } } else { if (ARGON2_MIN_AD_LENGTH > context->adlen) { return ARGON2_AD_TOO_SHORT; } if (ARGON2_MAX_AD_LENGTH < context->adlen) { return ARGON2_AD_TOO_LONG; } } /* Validate memory cost */ if (ARGON2_MIN_MEMORY > context->m_cost) { return ARGON2_MEMORY_TOO_LITTLE; } if (ARGON2_MAX_MEMORY < context->m_cost) { return ARGON2_MEMORY_TOO_MUCH; } if (context->m_cost < 8 * context->lanes) { return ARGON2_MEMORY_TOO_LITTLE; } /* Validate time cost */ if (ARGON2_MIN_TIME > context->t_cost) { return ARGON2_TIME_TOO_SMALL; } if (ARGON2_MAX_TIME < context->t_cost) { return ARGON2_TIME_TOO_LARGE; } /* Validate lanes */ if (ARGON2_MIN_LANES > context->lanes) { return ARGON2_LANES_TOO_FEW; } if (ARGON2_MAX_LANES < context->lanes) { return ARGON2_LANES_TOO_MANY; } /* Validate threads */ if (ARGON2_MIN_THREADS > context->threads) { return ARGON2_THREADS_TOO_FEW; } if (ARGON2_MAX_THREADS < context->threads) { return ARGON2_THREADS_TOO_MANY; } if (NULL != context->allocate_cbk && NULL == context->free_cbk) { return ARGON2_FREE_MEMORY_CBK_NULL; } if (NULL == context->allocate_cbk && NULL != context->free_cbk) { return ARGON2_ALLOCATE_MEMORY_CBK_NULL; } return ARGON2_OK; } void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) { uint32_t l; /* Make the first and second block in each lane as G(H0||0||i) or G(H0||1||i) */ uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE]; for (l = 0; l < instance->lanes; ++l) { store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0); store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l); blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash, ARGON2_PREHASH_SEED_LENGTH); load_block(&instance->memory[l * instance->lane_length + 0], blockhash_bytes); store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1); blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash, ARGON2_PREHASH_SEED_LENGTH); load_block(&instance->memory[l * instance->lane_length + 1], blockhash_bytes); } clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); } void initial_hash(uint8_t *blockhash, argon2_context *context, argon2_type type) { blake2b_state BlakeHash; uint8_t value[sizeof(uint32_t)]; if (NULL == context || NULL == blockhash) { return; } blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH); store32(&value, context->lanes); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->outlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->m_cost); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->t_cost); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->version); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, (uint32_t)type); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->pwdlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->pwd != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->pwd, context->pwdlen); if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) { secure_wipe_memory(context->pwd, context->pwdlen); context->pwdlen = 0; } } store32(&value, context->saltlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->salt != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->salt, context->saltlen); } store32(&value, context->secretlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->secret != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->secret, context->secretlen); if (context->flags & ARGON2_FLAG_CLEAR_SECRET) { secure_wipe_memory(context->secret, context->secretlen); context->secretlen = 0; } } store32(&value, context->adlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->ad != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->ad, context->adlen); } blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH); } int initialize(argon2_instance_t *instance, argon2_context *context) { uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; int result = ARGON2_OK; if (instance == NULL || context == NULL) return ARGON2_INCORRECT_PARAMETER; instance->context_ptr = context; /* 1. Memory allocation */ result = allocate_memory(context, (uint8_t **)&(instance->memory), instance->memory_blocks, sizeof(block)); if (result != ARGON2_OK) { return result; } /* 2. Initial hashing */ /* H_0 + 8 extra bytes to produce the first blocks */ /* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */ /* Hashing all inputs */ initial_hash(blockhash, context, instance->type); /* Zeroing 8 extra bytes */ clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH); #ifdef GENKAT initial_kat(blockhash, context, instance->type); #endif /* 3. Creating first blocks, we always have at least two blocks in a slice */ fill_first_blocks(blockhash, instance); /* Clearing the hash */ clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH); return ARGON2_OK; }