module Numeric.Algebra.Hyperbolic
( Hyperbolic(..)
, HyperBasis'(..)
, Hyper'(..)
) where
import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Rep
import Data.Foldable
import Data.Ix
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup
import Data.Traversable
import Numeric.Algebra
import Numeric.Coalgebra.Hyperbolic.Class
import Prelude hiding ((),(+),(*),negate,subtract, fromInteger)
data HyperBasis' = Cosh' | Sinh' deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Hyper' a = Hyper' a a deriving (Eq,Show,Read,Data,Typeable)
instance Hyperbolic HyperBasis' where
cosh = Cosh'
sinh = Sinh'
instance Rig r => Hyperbolic (Hyper' r) where
cosh = Hyper' one zero
sinh = Hyper' zero one
instance Rig r => Hyperbolic (HyperBasis' -> r) where
cosh Sinh' = zero
cosh Cosh' = one
sinh Sinh' = one
sinh Cosh' = zero
instance Representable Hyper' where
type Rep Hyper' = HyperBasis'
tabulate f = Hyper' (f Cosh') (f Sinh')
index (Hyper' a _ ) Cosh' = a
index (Hyper' _ b ) Sinh' = b
instance Distributive Hyper' where
distribute = distributeRep
instance Functor Hyper' where
fmap f (Hyper' a b) = Hyper' (f a) (f b)
instance Apply Hyper' where
(<.>) = apRep
instance Applicative Hyper' where
pure = pureRep
(<*>) = apRep
instance Bind Hyper' where
(>>-) = bindRep
instance Monad Hyper' where
return = pureRep
(>>=) = bindRep
instance MonadReader HyperBasis' Hyper' where
ask = askRep
local = localRep
instance Foldable Hyper' where
foldMap f (Hyper' a b) = f a `mappend` f b
instance Traversable Hyper' where
traverse f (Hyper' a b) = Hyper' <$> f a <*> f b
instance Foldable1 Hyper' where
foldMap1 f (Hyper' a b) = f a <> f b
instance Traversable1 Hyper' where
traverse1 f (Hyper' a b) = Hyper' <$> f a <.> f b
instance Additive r => Additive (Hyper' r) where
(+) = addRep
sinnum1p = sinnum1pRep
instance LeftModule r s => LeftModule r (Hyper' s) where
r .* Hyper' a b = Hyper' (r .* a) (r .* b)
instance RightModule r s => RightModule r (Hyper' s) where
Hyper' a b *. r = Hyper' (a *. r) (b *. r)
instance Monoidal r => Monoidal (Hyper' r) where
zero = zeroRep
sinnum = sinnumRep
instance Group r => Group (Hyper' r) where
() = minusRep
negate = negateRep
subtract = subtractRep
times = timesRep
instance Abelian r => Abelian (Hyper' r)
instance Idempotent r => Idempotent (Hyper' r)
instance Partitionable r => Partitionable (Hyper' r) where
partitionWith f (Hyper' a b) = id =<<
partitionWith (\a1 a2 ->
partitionWith (\b1 b2 -> f (Hyper' a1 b1) (Hyper' a2 b2)) b) a
instance (Commutative k, Semiring k) => Algebra k HyperBasis' where
mult f = f' where
fs = f Sinh' Cosh' + f Cosh' Sinh'
fc = f Cosh' Cosh' + f Sinh' Sinh'
f' Sinh' = fs
f' Cosh' = fc
instance (Commutative k, Monoidal k, Semiring k) => UnitalAlgebra k HyperBasis' where
unit _ Sinh' = zero
unit x Cosh' = x
instance (Commutative k, Monoidal k, Semiring k) => Coalgebra k HyperBasis' where
comult f = f' where
fs = f Sinh'
fc = f Cosh'
f' Sinh' Sinh' = fs
f' Sinh' Cosh' = zero
f' Cosh' Sinh' = zero
f' Cosh' Cosh' = fc
instance (Commutative k, Monoidal k, Semiring k) => CounitalCoalgebra k HyperBasis' where
counit f = f Cosh' + f Sinh'
instance (Commutative k, Monoidal k, Semiring k) => Bialgebra k HyperBasis'
instance (Commutative k, Group k, InvolutiveSemiring k) => InvolutiveAlgebra k HyperBasis' where
inv f = f' where
afc = adjoint (f Cosh')
nfs = negate (f Sinh')
f' Cosh' = afc
f' Sinh' = nfs
instance (Commutative k, Group k, InvolutiveSemiring k) => InvolutiveCoalgebra k HyperBasis' where
coinv = inv
instance (Commutative k, Group k, InvolutiveSemiring k) => HopfAlgebra k HyperBasis' where
antipode = inv
instance (Commutative k, Semiring k) => Multiplicative (Hyper' k) where
(*) = mulRep
instance (Commutative k, Semiring k) => Commutative (Hyper' k)
instance (Commutative k, Semiring k) => Semiring (Hyper' k)
instance (Commutative k, Rig k) => Unital (Hyper' k) where
one = Hyper' one zero
instance (Commutative r, Rig r) => Rig (Hyper' r) where
fromNatural n = Hyper' (fromNatural n) zero
instance (Commutative r, Ring r) => Ring (Hyper' r) where
fromInteger n = Hyper' (fromInteger n) zero
instance (Commutative r, Semiring r) => LeftModule (Hyper' r) (Hyper' r) where (.*) = (*)
instance (Commutative r, Semiring r) => RightModule (Hyper' r) (Hyper' r) where (*.) = (*)
instance (Commutative r, InvolutiveSemiring r, Rng r) => InvolutiveMultiplication (Hyper' r) where
adjoint (Hyper' a b) = Hyper' (adjoint a) (negate b)
instance (Commutative r, InvolutiveSemiring r, Rng r) => InvolutiveSemiring (Hyper' r)
instance (Commutative r, InvolutiveSemiring r, Rng r) => Quadrance r (Hyper' r) where
quadrance n = case adjoint n * n of
Hyper' a _ -> a
instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Hyper' r) where
recip q@(Hyper' a b) = Hyper' (qq \\ a) (qq \\ b)
where qq = quadrance q