module Simulation.Aivika.Trans.SystemDynamics
(
(.==.),
(./=.),
(.<.),
(.>=.),
(.>.),
(.<=.),
maxDynamics,
minDynamics,
ifDynamics,
integ,
integEither,
smoothI,
smooth,
smooth3I,
smooth3,
smoothNI,
smoothN,
delay1I,
delay1,
delay3I,
delay3,
delayNI,
delayN,
forecast,
trend,
diffsum,
diffsumEither,
lookupDynamics,
lookupStepwiseDynamics,
delay,
delayI,
step,
pulse,
pulseP,
ramp,
npv,
npve) where
import Data.Array
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Fix
import Simulation.Aivika.Trans.Internal.Specs
import Simulation.Aivika.Trans.Internal.Parameter
import Simulation.Aivika.Trans.Internal.Simulation
import Simulation.Aivika.Trans.Internal.Dynamics
import Simulation.Aivika.Trans.Dynamics.Extra
import Simulation.Aivika.Trans.Table
import Simulation.Aivika.Trans.SD
import qualified Simulation.Aivika.Trans.Dynamics.Memo as M
import qualified Simulation.Aivika.Trans.Dynamics.Memo.Unboxed as MU
(.==.) :: (Monad m, Eq a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(.==.) = liftM2 (==)
(./=.) :: (Monad m, Eq a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(./=.) = liftM2 (/=)
(.<.) :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(.<.) = liftM2 (<)
(.>=.) :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(.>=.) = liftM2 (>=)
(.>.) :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(.>.) = liftM2 (>)
(.<=.) :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m Bool
(.<=.) = liftM2 (<=)
maxDynamics :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m a
maxDynamics = liftM2 max
minDynamics :: (Monad m, Ord a) => Dynamics m a -> Dynamics m a -> Dynamics m a
minDynamics = liftM2 min
ifDynamics :: Monad m => Dynamics m Bool -> Dynamics m a -> Dynamics m a -> Dynamics m a
ifDynamics cond x y =
do a <- cond
if a then x else y
integEuler :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Point m
-> m Double
integEuler (Dynamics f) (Dynamics i) (Dynamics y) p =
case pointIteration p of
0 ->
i p
n -> do
let sc = pointSpecs p
ty = basicTime sc (n 1) 0
py = p { pointTime = ty, pointIteration = n 1, pointPhase = 0 }
a <- y py
b <- f py
let !v = a + spcDT (pointSpecs p) * b
return v
integRK2 :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Point m
-> m Double
integRK2 (Dynamics f) (Dynamics i) (Dynamics y) p =
case pointPhase p of
0 -> case pointIteration p of
0 ->
i p
n -> do
let sc = pointSpecs p
ty = basicTime sc (n 1) 0
t1 = ty
t2 = basicTime sc (n 1) 1
py = p { pointTime = ty, pointIteration = n 1, pointPhase = 0 }
p1 = py
p2 = p { pointTime = t2, pointIteration = n 1, pointPhase = 1 }
vy <- y py
k1 <- f p1
k2 <- f p2
let !v = vy + spcDT sc / 2.0 * (k1 + k2)
return v
1 -> do
let sc = pointSpecs p
n = pointIteration p
ty = basicTime sc n 0
t1 = ty
py = p { pointTime = ty, pointIteration = n, pointPhase = 0 }
p1 = py
vy <- y py
k1 <- f p1
let !v = vy + spcDT sc * k1
return v
_ ->
error "Incorrect phase: integRK2"
integRK4 :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Point m
-> m Double
integRK4 (Dynamics f) (Dynamics i) (Dynamics y) p =
case pointPhase p of
0 -> case pointIteration p of
0 ->
i p
n -> do
let sc = pointSpecs p
ty = basicTime sc (n 1) 0
t1 = ty
t2 = basicTime sc (n 1) 1
t3 = basicTime sc (n 1) 2
t4 = basicTime sc (n 1) 3
py = p { pointTime = ty, pointIteration = n 1, pointPhase = 0 }
p1 = py
p2 = p { pointTime = t2, pointIteration = n 1, pointPhase = 1 }
p3 = p { pointTime = t3, pointIteration = n 1, pointPhase = 2 }
p4 = p { pointTime = t4, pointIteration = n 1, pointPhase = 3 }
vy <- y py
k1 <- f p1
k2 <- f p2
k3 <- f p3
k4 <- f p4
let !v = vy + spcDT sc / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4)
return v
1 -> do
let sc = pointSpecs p
n = pointIteration p
ty = basicTime sc n 0
t1 = ty
py = p { pointTime = ty, pointIteration = n, pointPhase = 0 }
p1 = py
vy <- y py
k1 <- f p1
let !v = vy + spcDT sc / 2.0 * k1
return v
2 -> do
let sc = pointSpecs p
n = pointIteration p
ty = basicTime sc n 0
t2 = basicTime sc n 1
py = p { pointTime = ty, pointIteration = n, pointPhase = 0 }
p2 = p { pointTime = t2, pointIteration = n, pointPhase = 1 }
vy <- y py
k2 <- f p2
let !v = vy + spcDT sc / 2.0 * k2
return v
3 -> do
let sc = pointSpecs p
n = pointIteration p
ty = basicTime sc n 0
t3 = basicTime sc n 2
py = p { pointTime = ty, pointIteration = n, pointPhase = 0 }
p3 = p { pointTime = t3, pointIteration = n, pointPhase = 2 }
vy <- y py
k3 <- f p3
let !v = vy + spcDT sc * k3
return v
_ ->
error "Incorrect phase: integRK4"
integ :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
integ diff i =
mdo y <- MU.memoDynamics z
z <- Simulation $ \r ->
case spcMethod (runSpecs r) of
Euler -> return $ Dynamics $ integEuler diff i y
RungeKutta2 -> return $ Dynamics $ integRK2 diff i y
RungeKutta4 -> return $ Dynamics $ integRK4 diff i y
return y
integEulerEither :: Monad m
=> Dynamics m (Either Double Double)
-> Dynamics m Double
-> Dynamics m Double
-> Point m
-> m Double
integEulerEither (Dynamics f) (Dynamics i) (Dynamics y) p =
case pointIteration p of
0 ->
i p
n -> do
let sc = pointSpecs p
ty = basicTime sc (n 1) 0
py = p { pointTime = ty, pointIteration = n 1, pointPhase = 0 }
b <- f py
case b of
Left v ->
return v
Right b -> do
a <- y py
let !v = a + spcDT (pointSpecs p) * b
return v
integEither :: (MonadSD m, MonadFix m)
=> Dynamics m (Either Double Double)
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
integEither diff i =
mdo y <- MU.memoDynamics z
z <- Simulation $ \r ->
return $ Dynamics $ integEulerEither diff i y
return y
smoothI :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
smoothI x t i =
mdo y <- integ ((x y) / t) i
return y
smooth :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
smooth x t = smoothI x t x
smooth3I :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
smooth3I x t i =
mdo y <- integ ((s2 y) / t') i
s2 <- integ ((s1 s2) / t') i
s1 <- integ ((x s1) / t') i
let t' = t / 3.0
return y
smooth3 :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
smooth3 x t = smooth3I x t x
smoothNI :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Int
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
smoothNI x t n i =
mdo s <- forM [1 .. n] $ \k ->
if k == 1
then integ ((x a ! 1) / t') i
else integ ((a ! (k 1) a ! k) / t') i
let a = listArray (1, n) s
t' = t / fromIntegral n
return $ a ! n
smoothN :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Int
-> Simulation m (Dynamics m Double)
smoothN x t n = smoothNI x t n x
delay1I :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
delay1I x t i =
mdo y <- integ (x y / t) (i * t)
return $ y / t
delay1 :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
delay1 x t = delay1I x t x
delay3I :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
delay3I x t i =
mdo y <- integ (s2 / t' y / t') (i * t')
s2 <- integ (s1 / t' s2 / t') (i * t')
s1 <- integ (x s1 / t') (i * t')
let t' = t / 3.0
return $ y / t'
delay3 :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
delay3 x t = delay3I x t x
delayNI :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Int
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
delayNI x t n i =
mdo s <- forM [1 .. n] $ \k ->
if k == 1
then integ (x (a ! 1) / t') (i * t')
else integ ((a ! (k 1)) / t' (a ! k) / t') (i * t')
let a = listArray (1, n) s
t' = t / fromIntegral n
return $ (a ! n) / t'
delayN :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Int
-> Simulation m (Dynamics m Double)
delayN x t n = delayNI x t n x
forecast :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
forecast x at hz =
do y <- smooth x at
return $ x * (1.0 + (x / y 1.0) / at * hz)
trend :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
trend x at i =
do y <- smoothI x at (x / (1.0 + i * at))
return $ (x / y 1.0) / at
diffsum :: (MonadSD m, MonadFix m,
MU.MonadMemo m a, Num a)
=> Dynamics m a
-> Dynamics m a
-> Simulation m (Dynamics m a)
diffsum (Dynamics diff) (Dynamics i) =
mdo y <-
MU.memo0Dynamics $
Dynamics $ \p ->
case pointIteration p of
0 -> i p
n -> do
let Dynamics m = y
sc = pointSpecs p
ty = basicTime sc (n 1) 0
py = p { pointTime = ty,
pointIteration = n 1,
pointPhase = 0 }
a <- m py
b <- diff py
let !v = a + b
return v
return y
diffsumEither :: (MonadSD m, MonadFix m,
MU.MonadMemo m a, Num a)
=> Dynamics m (Either a a)
-> Dynamics m a
-> Simulation m (Dynamics m a)
diffsumEither (Dynamics diff) (Dynamics i) =
mdo y <-
MU.memo0Dynamics $
Dynamics $ \p ->
case pointIteration p of
0 -> i p
n -> do
let Dynamics m = y
sc = pointSpecs p
ty = basicTime sc (n 1) 0
py = p { pointTime = ty,
pointIteration = n 1,
pointPhase = 0 }
b <- diff py
case b of
Left v ->
return v
Right b -> do
a <- m py
let !v = a + b
return v
return y
lookupDynamics :: Monad m => Dynamics m Double -> Array Int (Double, Double) -> Dynamics m Double
lookupDynamics (Dynamics m) tbl =
Dynamics $ \p ->
do a <- m p
return $ tableLookup a tbl
lookupStepwiseDynamics :: Monad m => Dynamics m Double -> Array Int (Double, Double) -> Dynamics m Double
lookupStepwiseDynamics (Dynamics m) tbl =
Dynamics $ \p ->
do a <- m p
return $ tableLookupStepwise a tbl
delay :: Monad m
=> Dynamics m a
-> Dynamics m Double
-> Dynamics m a
delay (Dynamics x) (Dynamics d) = discreteDynamics $ Dynamics r
where
r p = do
let t = pointTime p
sc = pointSpecs p
n = pointIteration p
a <- d p
let t' = t a
n' = fromIntegral $ floor $ (t' spcStartTime sc) / spcDT sc
y | n' < 0 = x $ p { pointTime = spcStartTime sc,
pointIteration = 0,
pointPhase = 0 }
| n' < n = x $ p { pointTime = t',
pointIteration = n',
pointPhase = 1 }
| n' > n = error $
"Cannot return the future data: delay. " ++
"The lag time cannot be negative."
| otherwise = error $
"Cannot return the current data: delay. " ++
"The lag time is too small."
y
delayI :: MonadSD m
=> Dynamics m a
-> Dynamics m Double
-> Dynamics m a
-> Simulation m (Dynamics m a)
delayI (Dynamics x) (Dynamics d) (Dynamics i) = M.memo0Dynamics $ Dynamics r
where
r p = do
let t = pointTime p
sc = pointSpecs p
n = pointIteration p
a <- d p
let t' = t a
n' = fromIntegral $ floor $ (t' spcStartTime sc) / spcDT sc
y | n' < 0 = i $ p { pointTime = spcStartTime sc,
pointIteration = 0,
pointPhase = 0 }
| n' < n = x $ p { pointTime = t',
pointIteration = n',
pointPhase = 1 }
| n' > n = error $
"Cannot return the future data: delay. " ++
"The lag time cannot be negative."
| otherwise = error $
"Cannot return the current data: delay. " ++
"The lag time is too small."
y
npv :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
npv stream rate init factor =
mdo let dt' = liftParameter dt
df <- integ ( df * rate) 1
accum <- integ (stream * df) init
return $ (accum + dt' * stream * df) * factor
npve :: (MonadSD m, MonadFix m)
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Simulation m (Dynamics m Double)
npve stream rate init factor =
mdo let dt' = liftParameter dt
df <- integ ( df * rate / (1 + rate * dt')) (1 / (1 + rate * dt'))
accum <- integ (stream * df) init
return $ (accum + dt' * stream * df) * factor
step :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
step h st =
discreteDynamics $
Dynamics $ \p ->
do let sc = pointSpecs p
t = pointTime p
st' <- invokeDynamics p st
let t' = t + spcDT sc / 2
if st' < t'
then invokeDynamics p h
else return 0
pulse :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
pulse st w =
discreteDynamics $
Dynamics $ \p ->
do let sc = pointSpecs p
t = pointTime p
st' <- invokeDynamics p st
let t' = t + spcDT sc / 2
if st' < t'
then do w' <- invokeDynamics p w
return $ if t' < st' + w' then 1 else 0
else return 0
pulseP :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
pulseP st w period =
discreteDynamics $
Dynamics $ \p ->
do let sc = pointSpecs p
t = pointTime p
p' <- invokeDynamics p period
st' <- invokeDynamics p st
let y' = if (p' > 0) && (t > st')
then fromIntegral (floor $ (t st') / p') * p'
else 0
let st' = st' + y'
let t' = t + spcDT sc / 2
if st' < t'
then do w' <- invokeDynamics p w
return $ if t' < st' + w' then 1 else 0
else return 0
ramp :: Monad m
=> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
-> Dynamics m Double
ramp slope st e =
discreteDynamics $
Dynamics $ \p ->
do let sc = pointSpecs p
t = pointTime p
st' <- invokeDynamics p st
if st' < t
then do slope' <- invokeDynamics p slope
e' <- invokeDynamics p e
if t < e'
then return $ slope' * (t st')
else return $ slope' * (e' st')
else return 0