{-# LANGUAGE TypeFamilies #-}

-- |
-- Module     : Simulation.Aivika.Trans.Internal.Specs
-- Copyright  : Copyright (c) 2009-2015, David Sorokin <david.sorokin@gmail.com>
-- License    : BSD3
-- Maintainer : David Sorokin <david.sorokin@gmail.com>
-- Stability  : experimental
-- Tested with: GHC 7.10.1
--
-- It defines the simulation specs and related stuff.
module Simulation.Aivika.Trans.Internal.Specs
       (Specs(..),
        Method(..),
        Run(..),
        Point(..),
        basicTime,
        integIterationBnds,
        integIterationHiBnd,
        integIterationLoBnd,
        integPhaseBnds,
        integPhaseHiBnd,
        integPhaseLoBnd,
        integTimes,
        integPoints,
        integPointsStartingFrom,
        integStartPoint,
        integStopPoint,
        pointAt) where

import Simulation.Aivika.Trans.Internal.Types

-- | Returns the integration iterations starting from zero.
integIterations :: Specs m -> [Int]
integIterations sc = [i1 .. i2] where
  i1 = integIterationLoBnd sc
  i2 = integIterationHiBnd sc

-- | Returns the first and last integration iterations.
integIterationBnds :: Specs m -> (Int, Int)
integIterationBnds sc = (i1, i2) where
  i1 = integIterationLoBnd sc
  i2 = integIterationHiBnd sc

-- | Returns the first integration iteration, i.e. zero.
integIterationLoBnd :: Specs m -> Int
integIterationLoBnd sc = 0

-- | Returns the last integration iteration.
integIterationHiBnd :: Specs m -> Int
integIterationHiBnd sc =
  let n = round ((spcStopTime sc - 
                  spcStartTime sc) / spcDT sc)
  in if n < 0
     then
       error $
       "Either the simulation specs are incorrect, " ++
       "or a step time is too small, because of which " ++
       "a floating point overflow occurred on 32-bit Haskell implementation."
     else n

-- | Returns the phases for the specified simulation specs starting from zero.
integPhases :: Specs m -> [Int]
integPhases sc = 
  case spcMethod sc of
    Euler -> [0]
    RungeKutta2 -> [0, 1]
    RungeKutta4 -> [0, 1, 2, 3]

-- | Returns the first and last integration phases.
integPhaseBnds :: Specs m -> (Int, Int)
integPhaseBnds sc = 
  case spcMethod sc of
    Euler -> (0, 0)
    RungeKutta2 -> (0, 1)
    RungeKutta4 -> (0, 3)

-- | Returns the first integration phase, i.e. zero.
integPhaseLoBnd :: Specs m -> Int
integPhaseLoBnd sc = 0
                  
-- | Returns the last integration phase, 0 for Euler's method, 1 for RK2 and 3 for RK4.
integPhaseHiBnd :: Specs m -> Int
integPhaseHiBnd sc = 
  case spcMethod sc of
    Euler -> 0
    RungeKutta2 -> 1
    RungeKutta4 -> 3

-- | Returns a simulation time for the integration point specified by 
-- the specs, iteration and phase.
basicTime :: Specs m -> Int -> Int -> Double
{-# INLINE basicTime #-}
basicTime sc n ph =
  if ph < 0 then 
    error "Incorrect phase: basicTime"
  else
    spcStartTime sc + n' * spcDT sc + delta (spcMethod sc) ph 
      where n' = fromIntegral n
            delta Euler       0 = 0
            delta RungeKutta2 0 = 0
            delta RungeKutta2 1 = spcDT sc
            delta RungeKutta4 0 = 0
            delta RungeKutta4 1 = spcDT sc / 2
            delta RungeKutta4 2 = spcDT sc / 2
            delta RungeKutta4 3 = spcDT sc

-- | Return the integration time values.
integTimes :: Specs m -> [Double]
integTimes sc = map t [nl .. nu]
  where (nl, nu) = integIterationBnds sc
        t n = basicTime sc n 0

-- | Return the integration time points.
integPoints :: Run m -> [Point m]
integPoints r = points
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        points   = map point [nl .. nu]
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the start time point.
integStartPoint :: Run m -> Point m
integStartPoint r = point nl
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the stop time point.
integStopPoint :: Run m -> Point m
integStopPoint r = point nu
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the point at the specified time.
pointAt :: Run m -> Double -> Point m
{-# INLINABLE pointAt #-}
pointAt r t = p
  where sc = runSpecs r
        t0 = spcStartTime sc
        dt = spcDT sc
        n  = fromIntegral $ floor ((t - t0) / dt)
        p = Point { pointSpecs = sc,
                    pointRun = r,
                    pointTime = t,
                    pointIteration = n,
                    pointPhase = -1 }

-- | Return the integration time points startin from the specified iteration.
integPointsStartingFrom :: Point m -> [Point m]
integPointsStartingFrom p = points
  where r  = pointRun p
        sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        n0       = if pointPhase p == 0
                   then pointIteration p
                   else pointIteration p + 1
        points   = map point [n0 .. nu]
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }