{-# LANGUAGE TypeFamilies #-} -- | -- Module : Simulation.Aivika.Trans.Internal.Specs -- Copyright : Copyright (c) 2009-2014, David Sorokin <david.sorokin@gmail.com> -- License : BSD3 -- Maintainer : David Sorokin <david.sorokin@gmail.com> -- Stability : experimental -- Tested with: GHC 7.8.3 -- -- It defines the simulation specs and related stuff. module Simulation.Aivika.Trans.Internal.Specs (Specs(..), Method(..), Run(..), Point(..), Parameter(..), Simulation(..), Dynamics(..), Event(..), EventProcessing(..), EventQueueing(..), invokeParameter, invokeSimulation, invokeDynamics, invokeEvent, basicTime, integIterationBnds, integIterationHiBnd, integIterationLoBnd, integPhaseBnds, integPhaseHiBnd, integPhaseLoBnd, integTimes, integPoints, integStartPoint, integStopPoint, pointAt) where import Data.IORef import Simulation.Aivika.Trans.Session import Simulation.Aivika.Trans.Generator -- | It defines the simulation specs. data Specs m = Specs { spcStartTime :: Double, -- ^ the start time spcStopTime :: Double, -- ^ the stop time spcDT :: Double, -- ^ the integration time step spcMethod :: Method, -- ^ the integration method spcGeneratorType :: GeneratorType m -- ^ the type of the random number generator } -- | It defines the integration method. data Method = Euler -- ^ Euler's method | RungeKutta2 -- ^ the 2nd order Runge-Kutta method | RungeKutta4 -- ^ the 4th order Runge-Kutta method deriving (Eq, Ord, Show) -- | It indentifies the simulation run. data Run m = Run { runSpecs :: Specs m, -- ^ the simulation specs runSession :: Session m, -- ^ the simulation session runIndex :: Int, -- ^ the current simulation run index runCount :: Int, -- ^ the total number of runs in this experiment runEventQueue :: EventQueue m, -- ^ the event queue runGenerator :: Generator m -- ^ the random number generator } -- | It defines the simulation point appended with the additional information. data Point m = Point { pointSpecs :: Specs m, -- ^ the simulation specs pointRun :: Run m, -- ^ the simulation run pointTime :: Double, -- ^ the current time pointIteration :: Int, -- ^ the current iteration pointPhase :: Int -- ^ the current phase } -- | The 'Parameter' monad that allows specifying the model parameters. -- For example, they can be used when running the Monte-Carlo simulation. -- -- In general, this monad is very useful for representing a computation which is external -- relative to the model itself. newtype Parameter m a = Parameter (Run m -> m a) -- | A value in the 'Simulation' monad represents a computation -- within the simulation run. newtype Simulation m a = Simulation (Run m -> m a) -- | A value in the 'Dynamics' monad represents a polymorphic time varying function -- defined in the whole spectrum of time values as a single entity. It is ideal for -- numerical approximating integrals. newtype Dynamics m a = Dynamics (Point m -> m a) -- | A value in the 'Event' monad transformer represents a polymorphic time varying -- function which is strongly synchronized with the event queue. newtype Event m a = Event (Point m -> m a) -- | Invoke the 'Parameter' computation. invokeParameter :: Run m -> Parameter m a -> m a {-# INLINE invokeParameter #-} invokeParameter r (Parameter m) = m r -- | Invoke the 'Simulation' computation. invokeSimulation :: Run m -> Simulation m a -> m a {-# INLINE invokeSimulation #-} invokeSimulation r (Simulation m) = m r -- | Invoke the 'Dynamics' computation. invokeDynamics :: Point m -> Dynamics m a -> m a {-# INLINE invokeDynamics #-} invokeDynamics p (Dynamics m) = m p -- | Invoke the 'Event' computation. invokeEvent :: Point m -> Event m a -> m a {-# INLINE invokeEvent #-} invokeEvent p (Event m) = m p -- | Defines how the events are processed. data EventProcessing = CurrentEvents -- ^ either process all earlier and then current events, -- or raise an error if the current simulation time is less -- than the actual time of the event queue (safe within -- the 'Event' computation as this is protected by the type system) | EarlierEvents -- ^ either process all earlier events not affecting -- the events at the current simulation time, -- or raise an error if the current simulation time is less -- than the actual time of the event queue (safe within -- the 'Event' computation as this is protected by the type system) | CurrentEventsOrFromPast -- ^ either process all earlier and then current events, -- or do nothing if the current simulation time is less -- than the actual time of the event queue -- (do not use unless the documentation states the opposite) | EarlierEventsOrFromPast -- ^ either process all earlier events, -- or do nothing if the current simulation time is less -- than the actual time of the event queue -- (do not use unless the documentation states the opposite) deriving (Eq, Ord, Show) -- | A type class of monads that allow enqueueing the events. class EventQueueing m where -- | It represents the event queue. data EventQueue m :: * -- | Create a new event queue by the specified specs with simulation session. newEventQueue :: Session m -> Specs m -> m (EventQueue m) -- | Enqueue the event which must be actuated at the specified time. -- -- The events are processed when calling the 'runEvent' function. So, -- if you want to insist on their immediate execution then you can apply -- something like -- -- @ -- liftDynamics $ runEvent IncludingCurrentEvents $ return () -- @ -- -- although this is generally not good idea. enqueueEvent :: Double -> Event m () -> Event m () -- | Run the 'EventT' computation in the current simulation time -- within the 'DynamicsT' computation involving all pending -- 'CurrentEvents' in the processing too. runEvent :: Event m a -> Dynamics m a {-# INLINE runEvent #-} runEvent = runEventWith CurrentEvents -- | Run the 'EventT' computation in the current simulation time -- within the 'DynamicsT' computation specifying what pending events -- should be involved in the processing. runEventWith :: EventProcessing -> Event m a -> Dynamics m a -- | Return the number of pending events that should -- be yet actuated. eventQueueCount :: Event m Int -- | Returns the integration iterations starting from zero. integIterations :: Specs m -> [Int] integIterations sc = [i1 .. i2] where i1 = integIterationLoBnd sc i2 = integIterationHiBnd sc -- | Returns the first and last integration iterations. integIterationBnds :: Specs m -> (Int, Int) integIterationBnds sc = (i1, i2) where i1 = integIterationLoBnd sc i2 = integIterationHiBnd sc -- | Returns the first integration iteration, i.e. zero. integIterationLoBnd :: Specs m -> Int integIterationLoBnd sc = 0 -- | Returns the last integration iteration. integIterationHiBnd :: Specs m -> Int integIterationHiBnd sc = let n = round ((spcStopTime sc - spcStartTime sc) / spcDT sc) in if n < 0 then error $ "Either the simulation specs are incorrect, " ++ "or a step time is too small, because of which " ++ "a floating point overflow occurred on 32-bit Haskell implementation." else n -- | Returns the phases for the specified simulation specs starting from zero. integPhases :: Specs m -> [Int] integPhases sc = case spcMethod sc of Euler -> [0] RungeKutta2 -> [0, 1] RungeKutta4 -> [0, 1, 2, 3] -- | Returns the first and last integration phases. integPhaseBnds :: Specs m -> (Int, Int) integPhaseBnds sc = case spcMethod sc of Euler -> (0, 0) RungeKutta2 -> (0, 1) RungeKutta4 -> (0, 3) -- | Returns the first integration phase, i.e. zero. integPhaseLoBnd :: Specs m -> Int integPhaseLoBnd sc = 0 -- | Returns the last integration phase, 0 for Euler's method, 1 for RK2 and 3 for RK4. integPhaseHiBnd :: Specs m -> Int integPhaseHiBnd sc = case spcMethod sc of Euler -> 0 RungeKutta2 -> 1 RungeKutta4 -> 3 -- | Returns a simulation time for the integration point specified by -- the specs, iteration and phase. basicTime :: Specs m -> Int -> Int -> Double {-# INLINE basicTime #-} basicTime sc n ph = if ph < 0 then error "Incorrect phase: basicTime" else spcStartTime sc + n' * spcDT sc + delta (spcMethod sc) ph where n' = fromIntegral n delta Euler 0 = 0 delta RungeKutta2 0 = 0 delta RungeKutta2 1 = spcDT sc delta RungeKutta4 0 = 0 delta RungeKutta4 1 = spcDT sc / 2 delta RungeKutta4 2 = spcDT sc / 2 delta RungeKutta4 3 = spcDT sc -- | Return the integration time values. integTimes :: Specs m -> [Double] integTimes sc = map t [nl .. nu] where (nl, nu) = integIterationBnds sc t n = basicTime sc n 0 -- | Return the integration time points. integPoints :: Run m -> [Point m] integPoints r = points where sc = runSpecs r (nl, nu) = integIterationBnds sc points = map point [nl .. nu] point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the start time point. integStartPoint :: Run m -> Point m integStartPoint r = point nl where sc = runSpecs r (nl, nu) = integIterationBnds sc point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the stop time point. integStopPoint :: Run m -> Point m integStopPoint r = point nu where sc = runSpecs r (nl, nu) = integIterationBnds sc point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the point at the specified time. pointAt :: Run m -> Double -> Point m {-# INLINABLE pointAt #-} pointAt r t = p where sc = runSpecs r t0 = spcStartTime sc dt = spcDT sc n = fromIntegral $ floor ((t - t0) / dt) p = Point { pointSpecs = sc, pointRun = r, pointTime = t, pointIteration = n, pointPhase = -1 }