-- | -- Module : Simulation.Aivika.Internal.Specs -- Copyright : Copyright (c) 2009-2013, David Sorokin <david.sorokin@gmail.com> -- License : BSD3 -- Maintainer : David Sorokin <david.sorokin@gmail.com> -- Stability : experimental -- Tested with: GHC 7.6.3 -- -- It defines the simulation specs and related stuff. module Simulation.Aivika.Internal.Specs (Specs(..), Method(..), Run(..), Point(..), EventQueue(..), newEventQueue, basicTime, integIterationBnds, integIterationHiBnd, integIterationLoBnd, integPhaseBnds, integPhaseHiBnd, integPhaseLoBnd, integTimes, integPoints, integStartPoint, integStopPoint, pointAt) where import Data.IORef import Simulation.Aivika.Generator import qualified Simulation.Aivika.PriorityQueue as PQ -- | It defines the simulation specs. data Specs = Specs { spcStartTime :: Double, -- ^ the start time spcStopTime :: Double, -- ^ the stop time spcDT :: Double, -- ^ the integration time step spcMethod :: Method, -- ^ the integration method spcGeneratorType :: GeneratorType -- ^ the type of the random number generator } -- | It defines the integration method. data Method = Euler -- ^ Euler's method | RungeKutta2 -- ^ the 2nd order Runge-Kutta method | RungeKutta4 -- ^ the 4th order Runge-Kutta method deriving (Eq, Ord, Show) -- | It indentifies the simulation run. data Run = Run { runSpecs :: Specs, -- ^ the simulation specs runIndex :: Int, -- ^ the current simulation run index runCount :: Int, -- ^ the total number of runs in this experiment runEventQueue :: EventQueue, -- ^ the event queue runGenerator :: Generator -- ^ the random number generator } -- | It defines the simulation point appended with the additional information. data Point = Point { pointSpecs :: Specs, -- ^ the simulation specs pointRun :: Run, -- ^ the simulation run pointTime :: Double, -- ^ the current time pointIteration :: Int, -- ^ the current iteration pointPhase :: Int -- ^ the current phase } -- | It represents the event queue. data EventQueue = EventQueue { queuePQ :: PQ.PriorityQueue (Point -> IO ()), -- ^ the underlying priority queue queueBusy :: IORef Bool, -- ^ whether the queue is currently processing events queueTime :: IORef Double -- ^ the actual time of the event queue } -- | Create a new event queue by the specified specs. newEventQueue :: Specs -> IO EventQueue newEventQueue specs = do f <- newIORef False t <- newIORef $ spcStartTime specs pq <- PQ.newQueue return EventQueue { queuePQ = pq, queueBusy = f, queueTime = t } -- | Returns the integration iterations starting from zero. integIterations :: Specs -> [Int] integIterations sc = [i1 .. i2] where i1 = integIterationLoBnd sc i2 = integIterationHiBnd sc -- | Returns the first and last integration iterations. integIterationBnds :: Specs -> (Int, Int) integIterationBnds sc = (i1, i2) where i1 = integIterationLoBnd sc i2 = integIterationHiBnd sc -- | Returns the first integration iteration, i.e. zero. integIterationLoBnd :: Specs -> Int integIterationLoBnd sc = 0 -- | Returns the last integration iteration. integIterationHiBnd :: Specs -> Int integIterationHiBnd sc = let n = round ((spcStopTime sc - spcStartTime sc) / spcDT sc) in if n < 0 then error $ "The iteration number in the stop time has a negative value. " ++ "Either the simulation specs are incorrect, " ++ "or a floating point overflow occurred, " ++ "for example, when using a too small integration time step. " ++ "You have to define this time step regardless of " ++ "whether you actually use it or not, " ++ "for Aivika allows combining the ordinary differential equations " ++ "with the discrete event simulation within one model. " ++ "So, if you are still using the 32-bit architecture and " ++ "you do need a small integration time step " ++ "for integrating the equations " ++ "then you might think of using the 64-bit architecture. " ++ "Although you could probably just forget " ++ "to increase the time step " ++ "after increasing the stop time: integIterationHiBnd" else n -- | Returns the phases for the specified simulation specs starting from zero. integPhases :: Specs -> [Int] integPhases sc = case spcMethod sc of Euler -> [0] RungeKutta2 -> [0, 1] RungeKutta4 -> [0, 1, 2, 3] -- | Returns the first and last integration phases. integPhaseBnds :: Specs -> (Int, Int) integPhaseBnds sc = case spcMethod sc of Euler -> (0, 0) RungeKutta2 -> (0, 1) RungeKutta4 -> (0, 3) -- | Returns the first integration phase, i.e. zero. integPhaseLoBnd :: Specs -> Int integPhaseLoBnd sc = 0 -- | Returns the last integration phase, 0 for Euler's method, 1 for RK2 and 3 for RK4. integPhaseHiBnd :: Specs -> Int integPhaseHiBnd sc = case spcMethod sc of Euler -> 0 RungeKutta2 -> 1 RungeKutta4 -> 3 -- | Returns a simulation time for the integration point specified by -- the specs, iteration and phase. basicTime :: Specs -> Int -> Int -> Double basicTime sc n ph = if ph < 0 then error "Incorrect phase: basicTime" else spcStartTime sc + n' * spcDT sc + delta (spcMethod sc) ph where n' = fromIntegral n delta Euler 0 = 0 delta RungeKutta2 0 = 0 delta RungeKutta2 1 = spcDT sc delta RungeKutta4 0 = 0 delta RungeKutta4 1 = spcDT sc / 2 delta RungeKutta4 2 = spcDT sc / 2 delta RungeKutta4 3 = spcDT sc -- | Return the integration time values. integTimes :: Specs -> [Double] integTimes sc = map t [nl .. nu] where (nl, nu) = integIterationBnds sc t n = basicTime sc n 0 -- | Return the integration time points. integPoints :: Run -> [Point] integPoints r = points where sc = runSpecs r (nl, nu) = integIterationBnds sc points = map point [nl .. nu] point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the start time point. integStartPoint :: Run -> Point integStartPoint r = point nl where sc = runSpecs r (nl, nu) = integIterationBnds sc point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the stop time point. integStopPoint :: Run -> Point integStopPoint r = point nu where sc = runSpecs r (nl, nu) = integIterationBnds sc point n = Point { pointSpecs = sc, pointRun = r, pointTime = basicTime sc n 0, pointIteration = n, pointPhase = 0 } -- | Return the point at the specified time. pointAt :: Run -> Double -> Point pointAt r t = p where sc = runSpecs r t0 = spcStartTime sc dt = spcDT sc n = fromIntegral $ floor ((t - t0) / dt) p = Point { pointSpecs = sc, pointRun = r, pointTime = t, pointIteration = n, pointPhase = -1 }