-- | -- Module : Simulation.Aivika.Parameter.Random -- Copyright : Copyright (c) 2009-2013, David Sorokin <david.sorokin@gmail.com> -- License : BSD3 -- Maintainer : David Sorokin <david.sorokin@gmail.com> -- Stability : experimental -- Tested with: GHC 7.6.3 -- -- This module defines the random parameters of simulation experiments. -- module Simulation.Aivika.Parameter.Random (randomUniform, randomNormal, randomExponential, randomErlang, randomPoisson, randomBinomial) where import System.Random import Control.Monad.Trans import Simulation.Aivika.Generator import Simulation.Aivika.Internal.Specs import Simulation.Aivika.Internal.Parameter -- | Computation that generates a new random number distributed uniformly. -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomUniform :: Double -- ^ minimum -> Double -- ^ maximum -> Parameter Double randomUniform min max = Parameter $ \r -> let g = runGenerator r in generatorUniform g min max -- | Computation that generates a new random number distributed normally. -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomNormal :: Double -- ^ mean -> Double -- ^ deviation -> Parameter Double randomNormal mu nu = Parameter $ \r -> let g = runGenerator r in generatorNormal g mu nu -- | Computation that returns a new exponential random number with the specified mean -- (the reciprocal of the rate). -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomExponential :: Double -- ^ the mean (the reciprocal of the rate) -> Parameter Double randomExponential mu = Parameter $ \r -> let g = runGenerator r in generatorExponential g mu -- | Computation that returns a new Erlang random number with the specified scale -- (the reciprocal of the rate) and integer shape. -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomErlang :: Double -- ^ the scale (the reciprocal of the rate) -> Int -- ^ the shape -> Parameter Double randomErlang beta m = Parameter $ \r -> let g = runGenerator r in generatorErlang g beta m -- | Computation that returns a new Poisson random number with the specified mean. -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomPoisson :: Double -- ^ the mean -> Parameter Int randomPoisson mu = Parameter $ \r -> let g = runGenerator r in generatorPoisson g mu -- | Computation that returns a new binomial random number with the specified -- probability and trials. -- -- To create a parameter that would return the same value within the simulation run, -- you should memoize the computation, which is important for the Monte-Carlo simulation. -- -- To create a random function that would return the same values in the integration -- time points within the simulation run, you should either lift the computation to -- the @Dynamics@ computation and then memoize it too but using the corresponded -- function for that computation, or just take the predefined function that does -- namely this. randomBinomial :: Double -- ^ the probability -> Int -- ^ the number of trials -> Parameter Int randomBinomial prob trials = Parameter $ \r -> let g = runGenerator r in generatorBinomial g prob trials