{-# LANGUAGE UnboxedTuples, BangPatterns, MultiWayIf #-} module DoubleToScientific ( doubleToScientific, doubleToScientificTests, ) where -- import Debug.Trace -- import Data.Ratio ((%)) import Data.Bits import Data.Foldable (foldl') import Data.Word (Word64) import Data.Scientific (Scientific) import GHC.Integer (quotRemInteger) import qualified Data.Scientific as Sci import CastFloat import Types (UniformWord64 (..)) import Test.Tasty (TestTree, testGroup) import Test.Tasty.QuickCheck (testProperty, counterexample, (===), (==>)) ------------------------------------------------------------------------------- -- tests ------------------------------------------------------------------------------- -- note: RFC8785 has some special cases. doubleToScientificTests :: TestTree doubleToScientificTests = testGroup "doubleToScientific" [ testProperty "roundtrip1" $ \d -> Sci.toRealFloat (doubleToScientific d) === d , testProperty "roundtrip2" $ \(U64 w) -> let d = castWord64ToDouble w in counterexample (show d) $ not (isInfinite d || isNaN d) ==> Sci.toRealFloat (doubleToScientific d) === d ] ------------------------------------------------------------------------------- -- doubleToScientific ------------------------------------------------------------------------------- {- Convert 'Double' to 'Scientific' Based on double-conversion implementation https://github.com/google/double-conversion Copyright 2006-2011, the V8 project authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} doubleToScientific :: Double -> Scientific doubleToScientific v = case compare v 0 of EQ -> 0 LT -> negate (doubleToScientific' (negate v)) GT -> doubleToScientific' v ------------------------------------------------------------------------------- -- doubleToScientific implementation ------------------------------------------------------------------------------- data S = S { num :: !Integer , den :: !Integer , delta_m :: !Integer , delta_p :: !Integer , is_even :: !Bool } deriving Show -- preconditions: v > 0 doubleToScientific' :: Double -> Scientific doubleToScientific' v = let s1 = initialStartValues v (s2, pow10) = fixupMultiply10 s1 ds = generateShortestDigits s2 k = length ds in Sci.scientific (foldl' (\acc d -> 10 * acc + d) 0 ds) (pow10 - k + 1) -- error $ show (s1, s2, pow10, fromRational (num s2 % den s2), ds) initialStartValues :: Double -> S initialStartValues v = lowerBoundaryCloser' $ applyExponent e S { num = shiftL s 1 , den = 2 , delta_m = 1 , delta_p = 1 , is_even = evenInteger s } where (s, e, lower_boundary_is_closer) = decodeFloat' v lowerBoundaryCloser' = if lower_boundary_is_closer then lowerBoundaryCloser else id -- | return significant, exponent and whether lower boundery is closer. -- -- GHC's decodeFloat does "weird" stuff to denormal doubles, -- that messes up our delta calculation. decodeFloat' :: Double -> (Integer, Int, Bool) decodeFloat' d | denormal = (toInteger s, kDenormalExponent, False) | otherwise = (toInteger (s .|. kHiddenBit), fromIntegral e - kExponentBias, w64 .&. kSignificandMask == 0) where denormal = w64 .&. kExponentMask == 0 s = w64 .&. kSignificandMask e = shiftR (w64 .&. kExponentMask) kPhysicalSignificandSize w64 = castDoubleToWord64 d kExponentMask = 0x7FF0000000000000 :: Word64 kSignificandMask = 0x000FFFFFFFFFFFFF :: Word64 kHiddenBit = 0x0010000000000000 :: Word64 kPhysicalSignificandSize = 52 :: Int kExponentBias = 0x3FF + kPhysicalSignificandSize :: Int kDenormalExponent = -kExponentBias + 1 :: Int lowerBoundaryCloser :: S -> S lowerBoundaryCloser s = s { num = shiftL (num s) 1 , den = shiftL (den s) 1 , delta_p = shiftL (delta_p s) 1 } applyExponent :: Int -> S -> S applyExponent e s = case compare e 0 of EQ -> s GT -> S { num = shiftL (num s) e , den = den s , delta_m = shiftL (delta_m s) e , delta_p = shiftL (delta_m s) e , is_even = is_even s } LT -> S { num = num s , den = shiftL (den s) (negate e) , delta_m = delta_m s , delta_p = delta_m s , is_even = is_even s } -- This routine multiplies numerator/denominator so that its values lies in the -- range 1-10. That is after a call to this function we have: -- 1 <= (numerator + delta_plus) / denominator < 10. fixupMultiply10 :: S -> (S, Int) fixupMultiply10 = go 0 where go p s = case compare (den s) (num s + delta_p s) of GT -> go (p - 1) (times10 s) EQ -> (s, p) -- TODO: is_even check? LT -> case compare (num s + delta_p s) (10 * den s) of LT -> (s, p) _ -> go (p + 1) (div10 s) times10 :: S -> S times10 s = s { num = 10 * num s, delta_p = 10 * delta_p s, delta_m = 10 * delta_m s } div10 :: S -> S div10 s = s { den = 10 * den s } generateShortestDigits :: S -> [Integer] generateShortestDigits = go where go s = case quotRemInteger (num s) (den s) of (# d, r #) -> if | not in_delta_room_minus , not in_delta_room_plus -> d : go (times10 s { num = r }) | in_delta_room_minus , in_delta_room_plus -- Let's see if 2*numerator < denominator. -- If yes, then the next digit would be < 5 and we can round down. -> case compare (2 * r) (den s) of -- Remaining digits are less than .5. -> Round down (== do nothing). LT -> [d] -- Remaining digits are more than .5 of denominator. -> Round up. GT -> [d+1] -- Halfway case. -- round towards even EQ -> if evenInteger d then [d] else [d+1] | in_delta_room_minus -- round down -> [d] | otherwise -- Round up. -> [d + 1] where in_delta_room_minus | is_even s = r <= delta_m s | otherwise = r < delta_m s in_delta_room_plus | is_even s = r + delta_p s >= den s | otherwise = r + delta_p s > den s evenInteger :: Integer -> Bool evenInteger i = not (testBit i 0)