{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2015 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- This module provides reverse-mode Automatic Differentiation using post-hoc linear time -- topological sorting. -- -- For reverse mode AD we use 'System.Mem.StableName.StableName' to recover sharing information from -- the tape to avoid combinatorial explosion, and thus run asymptotically faster -- than it could without such sharing information, but the use of side-effects -- contained herein is benign. -- ----------------------------------------------------------------------------- module Numeric.AD.Mode.Kahn ( AD, Kahn, auto -- * Gradient , grad , grad' , gradWith , gradWith' -- * Jacobian , jacobian , jacobian' , jacobianWith , jacobianWith' -- * Hessian , hessian , hessianF -- * Derivatives , diff , diff' , diffF , diffF' ) where #if __GLASGOW_HASKELL__ < 710 import Data.Traversable (Traversable) #endif import Numeric.AD.Internal.Kahn (Kahn) import Numeric.AD.Internal.On import Numeric.AD.Internal.Type (AD(..)) import Numeric.AD.Mode import qualified Numeric.AD.Rank1.Kahn as Rank1 -- | The 'grad' function calculates the gradient of a non-scalar-to-scalar function with kahn-mode AD in a single pass. -- -- -- >>> grad (\[x,y,z] -> x*y+z) [1,2,3] -- [2,1,1] -- -- >>> grad (\[x,y] -> x**y) [0,2] -- [0.0,NaN] grad :: (Traversable f, Num a) => (forall s. f (AD s (Kahn a)) -> AD s (Kahn a)) -> f a -> f a grad f = Rank1.grad (runAD.f.fmap AD) {-# INLINE grad #-} -- | The 'grad'' function calculates the result and gradient of a non-scalar-to-scalar function with kahn-mode AD in a single pass. -- -- >>> grad' (\[x,y,z] -> 4*x*exp y+cos z) [1,2,3] -- (28.566231899122155,[29.5562243957226,29.5562243957226,-0.1411200080598672]) grad' :: (Traversable f, Num a) => (forall s. f (AD s (Kahn a)) -> AD s (Kahn a)) -> f a -> (a, f a) grad' f = Rank1.grad' (runAD.f.fmap AD) {-# INLINE grad' #-} -- | @'grad' g f@ function calculates the gradient of a non-scalar-to-scalar function @f@ with kahn-mode AD in a single pass. -- The gradient is combined element-wise with the argument using the function @g@. -- -- @ -- 'grad' = 'gradWith' (\_ dx -> dx) -- 'id' = 'gradWith' const -- @ -- -- gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Kahn a)) -> AD s (Kahn a)) -> f a -> f b gradWith g f = Rank1.gradWith g (runAD.f.fmap AD) {-# INLINE gradWith #-} -- | @'grad'' g f@ calculates the result and gradient of a non-scalar-to-scalar function @f@ with kahn-mode AD in a single pass -- the gradient is combined element-wise with the argument using the function @g@. -- -- @'grad'' == 'gradWith'' (\_ dx -> dx)@ gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Kahn a)) -> AD s (Kahn a)) -> f a -> (a, f b) gradWith' g f = Rank1.gradWith' g (runAD.f.fmap AD) {-# INLINE gradWith' #-} -- | The 'jacobian' function calculates the jacobian of a non-scalar-to-non-scalar function with kahn AD lazily in @m@ passes for @m@ outputs. -- -- >>> jacobian (\[x,y] -> [y,x,x*y]) [2,1] -- [[0,1],[1,0],[1,2]] -- -- >>> jacobian (\[x,y] -> [exp y,cos x,x+y]) [1,2] -- [[0.0,7.38905609893065],[-0.8414709848078965,0.0],[1.0,1.0]] jacobian :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Kahn a)) -> g (AD s (Kahn a))) -> f a -> g (f a) jacobian f = Rank1.jacobian (fmap runAD.f.fmap AD) {-# INLINE jacobian #-} -- | The 'jacobian'' function calculates both the result and the Jacobian of a nonscalar-to-nonscalar function, using @m@ invocations of kahn AD, -- where @m@ is the output dimensionality. Applying @fmap snd@ to the result will recover the result of 'jacobian' -- | An alias for 'gradF'' -- -- ghci> jacobian' (\[x,y] -> [y,x,x*y]) [2,1] -- [(1,[0,1]),(2,[1,0]),(2,[1,2])] jacobian' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Kahn a)) -> g (AD s (Kahn a))) -> f a -> g (a, f a) jacobian' f = Rank1.jacobian' (fmap runAD.f.fmap AD) {-# INLINE jacobian' #-} -- | 'jacobianWith g f' calculates the Jacobian of a non-scalar-to-non-scalar function @f@ with kahn AD lazily in @m@ passes for @m@ outputs. -- -- Instead of returning the Jacobian matrix, the elements of the matrix are combined with the input using the @g@. -- -- @ -- 'jacobian' = 'jacobianWith' (\_ dx -> dx) -- 'jacobianWith' 'const' = (\f x -> 'const' x '<$>' f x) -- @ jacobianWith :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Kahn a)) -> g (AD s (Kahn a))) -> f a -> g (f b) jacobianWith g f = Rank1.jacobianWith g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith #-} -- | 'jacobianWith' g f' calculates both the result and the Jacobian of a nonscalar-to-nonscalar function @f@, using @m@ invocations of kahn AD, -- where @m@ is the output dimensionality. Applying @fmap snd@ to the result will recover the result of 'jacobianWith' -- -- Instead of returning the Jacobian matrix, the elements of the matrix are combined with the input using the @g@. -- -- @'jacobian'' == 'jacobianWith'' (\_ dx -> dx)@ jacobianWith' :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Kahn a)) -> g (AD s (Kahn a))) -> f a -> g (a, f b) jacobianWith' g f = Rank1.jacobianWith' g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith' #-} -- | Compute the derivative of a function. -- -- >>> diff sin 0 -- 1.0 -- -- >>> cos 0 -- 1.0 diff :: Num a => (forall s. AD s (Kahn a) -> AD s (Kahn a)) -> a -> a diff f = Rank1.diff (runAD.f.AD) {-# INLINE diff #-} -- | The 'diff'' function calculates the value and derivative, as a -- pair, of a scalar-to-scalar function. -- -- -- >>> diff' sin 0 -- (0.0,1.0) diff' :: Num a => (forall s. AD s (Kahn a) -> AD s (Kahn a)) -> a -> (a, a) diff' f = Rank1.diff' (runAD.f.AD) {-# INLINE diff' #-} -- | Compute the derivatives of a function that returns a vector with regards to its single input. -- -- >>> diffF (\a -> [sin a, cos a]) 0 -- [1.0,0.0] diffF :: (Functor f, Num a) => (forall s. AD s (Kahn a) -> f (AD s (Kahn a))) -> a -> f a diffF f = Rank1.diffF (fmap runAD.f.AD) {-# INLINE diffF #-} -- | Compute the derivatives of a function that returns a vector with regards to its single input -- as well as the primal answer. -- -- >>> diffF' (\a -> [sin a, cos a]) 0 -- [(0.0,1.0),(1.0,0.0)] diffF' :: (Functor f, Num a) => (forall s. AD s (Kahn a) -> f (AD s (Kahn a))) -> a -> f (a, a) diffF' f = Rank1.diffF' (fmap runAD.f.AD) {-# INLINE diffF' #-} -- | Compute the 'hessian' via the 'jacobian' of the gradient. gradient is computed in 'Kahn' mode and then the 'jacobian' is computed in 'Kahn' mode. -- -- However, since the @'grad' f :: f a -> f a@ is square this is not as fast as using the forward-mode 'jacobian' of a reverse mode gradient provided by 'Numeric.AD.hessian'. -- -- >>> hessian (\[x,y] -> x*y) [1,2] -- [[0,1],[1,0]] hessian :: (Traversable f, Num a) => (forall s. f (AD s (On (Kahn (Kahn a)))) -> AD s (On (Kahn (Kahn a)))) -> f a -> f (f a) hessian f = Rank1.hessian (runAD.f.fmap AD) -- | Compute the order 3 Hessian tensor on a non-scalar-to-non-scalar function via the 'Kahn'-mode Jacobian of the 'Kahn'-mode Jacobian of the function. -- -- Less efficient than 'Numeric.AD.Mode.Mixed.hessianF'. -- -- >>> hessianF (\[x,y] -> [x*y,x+y,exp x*cos y]) [1,2] -- [[[0.0,1.0],[1.0,0.0]],[[0.0,0.0],[0.0,0.0]],[[-1.1312043837568135,-2.4717266720048188],[-2.4717266720048188,1.1312043837568135]]] hessianF :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (On (Kahn (Kahn a)))) -> g (AD s (On (Kahn (Kahn a))))) -> f a -> g (f (f a)) hessianF f = Rank1.hessianF (fmap runAD.f.fmap AD)