module Numeric.AD.Internal.Sparse
( Monomial(..)
, emptyMonomial
, addToMonomial
, indices
, Sparse(..)
, apply
, vars
, d, d', ds
, skeleton
, spartial
, partial
, vgrad
, vgrad'
, vgrads
, Grad(..)
, Grads(..)
, terms
, primal
) where
import Prelude hiding (lookup)
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative hiding ((<**>))
#endif
import Control.Comonad.Cofree
import Control.Monad (join)
import Data.Data
import Data.IntMap (IntMap, unionWith, findWithDefault, toAscList, singleton, insertWith, lookup)
import qualified Data.IntMap as IntMap
import Data.Number.Erf
import Data.Traversable
import Data.Typeable ()
import Numeric.AD.Internal.Combinators
import Numeric.AD.Jacobian
import Numeric.AD.Mode
newtype Monomial = Monomial (IntMap Int)
emptyMonomial :: Monomial
emptyMonomial = Monomial IntMap.empty
addToMonomial :: Int -> Monomial -> Monomial
addToMonomial k (Monomial m) = Monomial (insertWith (+) k 1 m)
indices :: Monomial -> [Int]
indices (Monomial as) = uncurry (flip replicate) `concatMap` toAscList as
data Sparse a
= Sparse !a (IntMap (Sparse a))
| Zero
deriving (Show, Data, Typeable)
vars :: (Traversable f, Num a) => f a -> f (Sparse a)
vars = snd . mapAccumL var 0 where
var !n a = (n + 1, Sparse a $ singleton n $ auto 1)
apply :: (Traversable f, Num a) => (f (Sparse a) -> b) -> f a -> b
apply f = f . vars
skeleton :: Traversable f => f a -> f Int
skeleton = snd . mapAccumL (\ !n _ -> (n + 1, n)) 0
d :: (Traversable f, Num a) => f b -> Sparse a -> f a
d fs (Zero) = 0 <$ fs
d fs (Sparse _ da) = snd $ mapAccumL (\ !n _ -> (n + 1, maybe 0 primal $ lookup n da)) 0 fs
d' :: (Traversable f, Num a) => f a -> Sparse a -> (a, f a)
d' fs Zero = (0, 0 <$ fs)
d' fs (Sparse a da) = (a, snd $ mapAccumL (\ !n _ -> (n + 1, maybe 0 primal $ lookup n da)) 0 fs)
ds :: (Traversable f, Num a) => f b -> Sparse a -> Cofree f a
ds fs Zero = r where r = 0 :< (r <$ fs)
ds fs (as@(Sparse a _)) = a :< (go emptyMonomial <$> fns) where
fns = skeleton fs
go ix i = partial (indices ix') as :< (go ix' <$> fns) where
ix' = addToMonomial i ix
partialS :: Num a => [Int] -> Sparse a -> Sparse a
partialS [] a = a
partialS (n:ns) (Sparse _ da) = partialS ns $ findWithDefault Zero n da
partialS _ Zero = Zero
partial :: Num a => [Int] -> Sparse a -> a
partial [] (Sparse a _) = a
partial (n:ns) (Sparse _ da) = partial ns $ findWithDefault (auto 0) n da
partial _ Zero = 0
spartial :: Num a => [Int] -> Sparse a -> Maybe a
spartial [] (Sparse a _) = Just a
spartial (n:ns) (Sparse _ da) = do
a' <- lookup n da
spartial ns a'
spartial _ Zero = Nothing
primal :: Num a => Sparse a -> a
primal (Sparse a _) = a
primal Zero = 0
(<**>) :: Floating a => Sparse a -> Sparse a -> Sparse a
Zero <**> y = auto (0 ** primal y)
_ <**> Zero = auto 1
x <**> y@(Sparse b bs)
| IntMap.null bs = lift1 (**b) (\z -> b *^ z <**> Sparse (b1) IntMap.empty) x
| otherwise = lift2_ (**) (\z xi yi -> (yi * z / xi, z * log xi)) x y
instance Num a => Mode (Sparse a) where
type Scalar (Sparse a) = a
auto a = Sparse a IntMap.empty
zero = Zero
Zero ^* _ = Zero
Sparse a as ^* b = Sparse (a * b) $ fmap (^* b) as
_ *^ Zero = Zero
a *^ Sparse b bs = Sparse (a * b) $ fmap (a *^) bs
Zero ^/ _ = Zero
Sparse a as ^/ b = Sparse (a / b) $ fmap (^/ b) as
infixr 6 <+>
(<+>) :: Num a => Sparse a -> Sparse a -> Sparse a
Zero <+> a = a
a <+> Zero = a
Sparse a as <+> Sparse b bs = Sparse (a + b) $ unionWith (<+>) as bs
instance Num a => Jacobian (Sparse a) where
type D (Sparse a) = Sparse a
unary f _ Zero = auto (f 0)
unary f dadb (Sparse pb bs) = Sparse (f pb) $ IntMap.map (* dadb) bs
lift1 f _ Zero = auto (f 0)
lift1 f df b@(Sparse pb bs) = Sparse (f pb) $ IntMap.map (* df b) bs
lift1_ f _ Zero = auto (f 0)
lift1_ f df b@(Sparse pb bs) = a where
a = Sparse (f pb) $ IntMap.map ((df a b) *) bs
binary f _ _ Zero Zero = auto (f 0 0)
binary f _ dadc Zero (Sparse pc dc) = Sparse (f 0 pc) $ IntMap.map (dadc *) dc
binary f dadb _ (Sparse pb db) Zero = Sparse (f pb 0 ) $ IntMap.map (dadb *) db
binary f dadb dadc (Sparse pb db) (Sparse pc dc) = Sparse (f pb pc) $
unionWith (<+>) (IntMap.map (dadb *) db) (IntMap.map (dadc *) dc)
lift2 f _ Zero Zero = auto (f 0 0)
lift2 f df Zero c@(Sparse pc dc) = Sparse (f 0 pc) $ IntMap.map (dadc *) dc where dadc = snd (df zero c)
lift2 f df b@(Sparse pb db) Zero = Sparse (f pb 0) $ IntMap.map (* dadb) db where dadb = fst (df b zero)
lift2 f df b@(Sparse pb db) c@(Sparse pc dc) = Sparse (f pb pc) da where
(dadb, dadc) = df b c
da = unionWith (<+>) (IntMap.map (dadb *) db) (IntMap.map (dadc *) dc)
lift2_ f _ Zero Zero = auto (f 0 0)
lift2_ f df b@(Sparse pb db) Zero = a where a = Sparse (f pb 0) (IntMap.map (fst (df a b zero) *) db)
lift2_ f df Zero c@(Sparse pc dc) = a where a = Sparse (f 0 pc) (IntMap.map (* snd (df a zero c)) dc)
lift2_ f df b@(Sparse pb db) c@(Sparse pc dc) = a where
(dadb, dadc) = df a b c
a = Sparse (f pb pc) da
da = unionWith (<+>) (IntMap.map (dadb *) db) (IntMap.map (dadc *) dc)
#define HEAD Sparse a
#include "instances.h"
class Num a => Grad i o o' a | i -> a o o', o -> a i o', o' -> a i o where
pack :: i -> [Sparse a] -> Sparse a
unpack :: ([a] -> [a]) -> o
unpack' :: ([a] -> (a, [a])) -> o'
instance Num a => Grad (Sparse a) [a] (a, [a]) a where
pack i _ = i
unpack f = f []
unpack' f = f []
instance Grad i o o' a => Grad (Sparse a -> i) (a -> o) (a -> o') a where
pack f (a:as) = pack (f a) as
pack _ [] = error "Grad.pack: logic error"
unpack f a = unpack (f . (a:))
unpack' f a = unpack' (f . (a:))
vgrad :: Grad i o o' a => i -> o
vgrad i = unpack (unsafeGrad (pack i)) where
unsafeGrad f as = d as $ apply f as
vgrad' :: Grad i o o' a => i -> o'
vgrad' i = unpack' (unsafeGrad' (pack i)) where
unsafeGrad' f as = d' as $ apply f as
class Num a => Grads i o a | i -> a o, o -> a i where
packs :: i -> [Sparse a] -> Sparse a
unpacks :: ([a] -> Cofree [] a) -> o
instance Num a => Grads (Sparse a) (Cofree [] a) a where
packs i _ = i
unpacks f = f []
instance Grads i o a => Grads (Sparse a -> i) (a -> o) a where
packs f (a:as) = packs (f a) as
packs _ [] = error "Grad.pack: logic error"
unpacks f a = unpacks (f . (a:))
vgrads :: Grads i o a => i -> o
vgrads i = unpacks (unsafeGrads (packs i)) where
unsafeGrads f as = ds as $ apply f as
isZero :: Sparse a -> Bool
isZero Zero = True
isZero _ = False
terms :: Monomial -> [(Integer,Monomial,Monomial)]
terms (Monomial m) = t (toAscList m) where
t [] = [(1,emptyMonomial,emptyMonomial)]
t ((k,a):ts) = concatMap (f (t ts)) (zip (bins!!a) [0..a]) where
f ps (b,i) = map (\(w,Monomial mf,Monomial mg) -> (w*b,Monomial (IntMap.insert k i mf), Monomial (IntMap.insert k (ai) mg))) ps
bins = iterate next [1]
next xs@(_:ts) = 1 : zipWith (+) xs ts ++ [1]
next [] = error "impossible"
mul :: Num a => Sparse a -> Sparse a -> Sparse a
mul Zero _ = Zero
mul _ Zero = Zero
mul f@(Sparse _ am) g@(Sparse _ bm) = Sparse (primal f * primal g) (derivs 0 emptyMonomial) where
derivs v mi = IntMap.unions (map fn [v..kMax]) where
fn w
| and zs = IntMap.empty
| otherwise = IntMap.singleton w (Sparse (sum ds) (derivs w mi'))
where
mi' = addToMonomial w mi
(zs,ds) = unzip (map derVal (terms mi'))
derVal (bin,mif,mig) = (isZero fder || isZero gder, fromIntegral bin * primal fder * primal gder) where
fder = partialS (indices mif) f
gder = partialS (indices mig) g
kMax = maybe (1) (fst.fst) (IntMap.maxViewWithKey am) `max` maybe (1) (fst.fst) (IntMap.maxViewWithKey bm)