/**CFile**************************************************************** FileName [llb2Core.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [BDD based reachability.] Synopsis [Core procedure.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: llb2Core.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "llbInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// typedef struct Llb_Img_t_ Llb_Img_t; struct Llb_Img_t_ { Aig_Man_t * pInit; // AIG manager Aig_Man_t * pAig; // AIG manager Gia_ParLlb_t * pPars; // parameters DdManager * dd; // BDD manager DdManager * ddG; // BDD manager DdManager * ddR; // BDD manager Vec_Ptr_t * vDdMans; // BDD managers for each partition Vec_Ptr_t * vRings; // onion rings in ddR Vec_Int_t * vDriRefs; // driver references Vec_Int_t * vVarsCs; // cur state variables Vec_Int_t * vVarsNs; // next state variables Vec_Int_t * vCs2Glo; // cur state variables into global variables Vec_Int_t * vNs2Glo; // next state variables into global variables Vec_Int_t * vGlo2Cs; // global variables into cur state variables Vec_Int_t * vGlo2Ns; // global variables into next state variables }; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computes cube composed of given variables with given values.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_CoreComputeCube( DdManager * dd, Vec_Int_t * vVars, int fUseVarIndex, char * pValues ) { DdNode * bRes, * bVar, * bTemp; int i, iVar, Index; abctime TimeStop; TimeStop = dd->TimeStop; dd->TimeStop = 0; bRes = Cudd_ReadOne( dd ); Cudd_Ref( bRes ); Vec_IntForEachEntry( vVars, Index, i ) { iVar = fUseVarIndex ? Index : i; bVar = Cudd_NotCond( Cudd_bddIthVar(dd, iVar), (int)(pValues == NULL || pValues[i] != 1) ); bRes = Cudd_bddAnd( dd, bTemp = bRes, bVar ); Cudd_Ref( bRes ); Cudd_RecursiveDeref( dd, bTemp ); } Cudd_Deref( bRes ); dd->TimeStop = TimeStop; return bRes; } /**Function************************************************************* Synopsis [Derives counter-example by backward reachability.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Cex_t * Llb_CoreDeriveCex( Llb_Img_t * p ) { Abc_Cex_t * pCex; Aig_Obj_t * pObj; Vec_Ptr_t * vSupps, * vQuant0, * vQuant1; DdNode * bState = NULL, * bImage, * bOneCube, * bTemp, * bRing; int i, v, RetValue, nPiOffset; char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) ); assert( Vec_PtrSize(p->vRings) > 0 ); p->dd->TimeStop = 0; p->ddR->TimeStop = 0; // get supports and quantified variables Vec_PtrReverseOrder( p->vDdMans ); vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 1, 0 ); Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, 0 ); Vec_VecFree( (Vec_Vec_t *)vSupps ); Llb_ImgQuantifyReset( p->vDdMans ); // Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0 ); // allocate room for the counter-example pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) ); pCex->iFrame = Vec_PtrSize(p->vRings) - 1; pCex->iPo = -1; // get the last cube bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc ); Cudd_Ref( bOneCube ); RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues ); Cudd_RecursiveDeref( p->ddR, bOneCube ); assert( RetValue ); // write PIs of counter-example nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1); Saig_ManForEachPi( p->pAig, pObj, i ) if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 ) Abc_InfoSetBit( pCex->pData, nPiOffset + i ); // write state in terms of NS variables if ( Vec_PtrSize(p->vRings) > 1 ) { bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState ); } // perform backward analysis Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v ) { if ( v == Vec_PtrSize(p->vRings) - 1 ) continue; // compute the next states bImage = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bState, vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, 1, 0, 0 ); assert( bImage != NULL ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( p->dd, bState ); //Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" ); // move reached states into ring manager bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( p->dd, bTemp ); // intersect with the previous set bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing ); Cudd_Ref( bOneCube ); Cudd_RecursiveDeref( p->ddR, bImage ); // find any assignment of the BDD RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues ); Cudd_RecursiveDeref( p->ddR, bOneCube ); assert( RetValue ); // write PIs of counter-example nPiOffset -= Saig_ManPiNum(p->pAig); Saig_ManForEachPi( p->pAig, pObj, i ) if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 ) Abc_InfoSetBit( pCex->pData, nPiOffset + i ); // check that we get the init state if ( v == 0 ) { Saig_ManForEachLo( p->pAig, pObj, i ) assert( pValues[i] == 0 ); break; } // write state in terms of NS variables bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues ); Cudd_Ref( bState ); } assert( nPiOffset == Saig_ManRegNum(p->pAig) ); // update the output number RetValue = Saig_ManFindFailedPoCex( p->pInit, pCex ); assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pInit) ); // invalid CEX!!! pCex->iPo = RetValue; // cleanup ABC_FREE( pValues ); Vec_VecFree( (Vec_Vec_t *)vQuant0 ); Vec_VecFree( (Vec_Vec_t *)vQuant1 ); return pCex; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_CoreReachability_int( Llb_Img_t * p, Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1 ) { int * pLoc2Glo = p->pPars->fBackward? Vec_IntArray( p->vCs2Glo ) : Vec_IntArray( p->vNs2Glo ); int * pLoc2GloR = p->pPars->fBackward? Vec_IntArray( p->vNs2Glo ) : Vec_IntArray( p->vCs2Glo ); int * pGlo2Loc = p->pPars->fBackward? Vec_IntArray( p->vGlo2Ns ) : Vec_IntArray( p->vGlo2Cs ); DdNode * bCurrent, * bReached, * bNext, * bTemp; abctime clk2, clk = Abc_Clock(); int nIters, nBddSize;//, iOutFail = -1; /* // compute time to stop if ( p->pPars->TimeLimit ) p->pPars->TimeTarget = Abc_Clock() + p->pPars->TimeLimit * CLOCKS_PER_SEC; else p->pPars->TimeTarget = 0; */ if ( Abc_Clock() > p->pPars->TimeTarget ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) before image computation.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } // set the stop time parameter p->dd->TimeStop = p->pPars->TimeTarget; p->ddG->TimeStop = p->pPars->TimeTarget; p->ddR->TimeStop = p->pPars->TimeTarget; // compute initial states if ( p->pPars->fBackward ) { // create init state in the global manager bTemp = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget ); if ( bTemp == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } Cudd_Ref( bTemp ); // create bad state in the ring manager p->ddR->bFunc = Llb_CoreComputeCube( p->ddR, p->vVarsCs, 0, NULL ); Cudd_Ref( p->ddR->bFunc ); bCurrent = Llb_BddQuantifyPis( p->pInit, p->ddR, bTemp ); Cudd_Ref( bCurrent ); Cudd_RecursiveDeref( p->ddR, bTemp ); bReached = Cudd_bddTransfer( p->ddR, p->ddG, bCurrent ); Cudd_Ref( bReached ); Cudd_RecursiveDeref( p->ddR, bCurrent ); // move init state to the working manager bCurrent = Extra_TransferPermute( p->ddG, p->dd, bReached, pGlo2Loc ); if ( bCurrent == NULL ) { Cudd_RecursiveDeref( p->ddG, bReached ); if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during transfer 0.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } Cudd_Ref( bCurrent ); } else { // create bad state in the ring manager p->ddR->bFunc = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget ); if ( p->ddR->bFunc == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } Cudd_Ref( p->ddR->bFunc ); // create init state in the working and global manager bCurrent = Llb_CoreComputeCube( p->dd, p->vVarsCs, 1, NULL ); Cudd_Ref( bCurrent ); bReached = Llb_CoreComputeCube( p->ddG, p->vVarsCs, 0, NULL ); Cudd_Ref( bReached ); //Extra_bddPrint( p->dd, bCurrent ); printf( "\n" ); //Extra_bddPrint( p->ddG, bReached ); printf( "\n" ); } // compute onion rings for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ ) { clk2 = Abc_Clock(); // check the runtime limit if ( p->pPars->TimeLimit && Abc_Clock() > p->pPars->TimeTarget ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } // save the onion ring bTemp = Extra_TransferPermute( p->dd, p->ddR, bCurrent, pLoc2GloR ); if ( bTemp == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } Cudd_Ref( bTemp ); Vec_PtrPush( p->vRings, bTemp ); // check it for bad states if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) ) { assert( p->pInit->pSeqModel == NULL ); if ( !p->pPars->fBackward ) p->pInit->pSeqModel = Llb_CoreDeriveCex( p ); Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; if ( !p->pPars->fSilent ) { if ( !p->pPars->fBackward ) Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d. ", p->pInit->pSeqModel->iPo, p->pInit->pName, nIters ); else Abc_Print( 1, "Output ??? was asserted in frame %d (counter-example is not produced). ", nIters ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } p->pPars->iFrame = nIters - 1; return 0; } // compute the next states bNext = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bCurrent, vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, p->pPars->fBackward, p->pPars->fReorder, p->pPars->fVeryVerbose ); if ( bNext == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } Cudd_Ref( bNext ); Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; //Extra_bddPrintSupport( p->dd, bNext ); printf( "\n" ); // remap these states into the global manager // bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo ); Cudd_Ref( bNext ); // Cudd_RecursiveDeref( p->dd, bTemp ); // bNext = Extra_TransferPermuteTime( p->dd, p->ddG, bTemp = bNext, pLoc2Glo, p->pPars->TimeTarget ); bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo ); if ( bNext == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->dd, bTemp ); Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } Cudd_Ref( bNext ); Cudd_RecursiveDeref( p->dd, bTemp ); nBddSize = Cudd_DagSize(bNext); // check if there are any new states if ( Cudd_bddLeq( p->ddG, bNext, bReached ) ) // implication = no new states { Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL; break; } // get the new states bCurrent = Cudd_bddAnd( p->ddG, bNext, Cudd_Not(bReached) ); if ( bCurrent == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->ddG, bNext ); Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } Cudd_Ref( bCurrent ); // remap these states into the current state vars // bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc ); Cudd_Ref( bCurrent ); // Cudd_RecursiveDeref( p->ddG, bTemp ); // bCurrent = Extra_TransferPermuteTime( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc, p->pPars->TimeTarget ); bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc ); if ( bCurrent == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->ddG, bTemp ); Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } Cudd_Ref( bCurrent ); Cudd_RecursiveDeref( p->ddG, bTemp ); // add to the reached states bReached = Cudd_bddOr( p->ddG, bTemp = bReached, bNext ); Cudd_Ref( bReached ); Cudd_RecursiveDeref( p->ddG, bTemp ); Cudd_RecursiveDeref( p->ddG, bNext ); bNext = NULL; if ( p->pPars->fVeryVerbose ) { double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) ); // Extra_bddPrint( p->ddG, bReached );printf( "\n" ); fprintf( stdout, " Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) ); fflush( stdout ); } if ( p->pPars->fVerbose ) { fprintf( stdout, "F =%3d : ", nIters ); fprintf( stdout, "Image =%6d ", nBddSize ); fprintf( stdout, "(%4d%4d) ", Cudd_ReadReorderings(p->dd), Cudd_ReadGarbageCollections(p->dd) ); fprintf( stdout, "Reach =%6d ", Cudd_DagSize(bReached) ); fprintf( stdout, "(%4d%4d) ", Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 ); } // check timeframe limit if ( nIters == p->pPars->nIterMax - 1 ) { if ( !p->pPars->fSilent ) printf( "Reached limit on the number of timeframes (%d).\n", p->pPars->nIterMax ); p->pPars->iFrame = nIters; Cudd_RecursiveDeref( p->dd, bCurrent ); bCurrent = NULL; Cudd_RecursiveDeref( p->ddG, bReached ); bReached = NULL; return -1; } } if ( bReached == NULL ) { p->pPars->iFrame = nIters - 1; return 0; // reachable } if ( bCurrent ) Cudd_RecursiveDeref( p->dd, bCurrent ); // report the stats if ( p->pPars->fVerbose ) { double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) ); if ( nIters >= p->pPars->nIterMax ) fprintf( stdout, "Reachability analysis is stopped after %d frames.\n", nIters ); else fprintf( stdout, "Reachability analysis completed after %d frames.\n", nIters ); fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) ); fflush( stdout ); } if ( p->pPars->fDumpReached ) { Llb_ManDumpReached( p->ddG, bReached, p->pAig->pName, "reached.blif" ); printf( "Reached states with %d BDD nodes are dumpted into file \"reached.blif\".\n", Cudd_DagSize(bReached) ); } Cudd_RecursiveDeref( p->ddG, bReached ); if ( nIters >= p->pPars->nIterMax ) { if ( !p->pPars->fSilent ) { printf( "Verified only for states reachable in %d frames. ", nIters ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } p->pPars->iFrame = p->pPars->nIterMax; return -1; // undecided } if ( !p->pPars->fSilent ) { printf( "The miter is proved unreachable after %d iterations. ", nIters ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } p->pPars->iFrame = nIters - 1; return 1; // unreachable } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_CoreReachability( Llb_Img_t * p ) { Vec_Ptr_t * vSupps, * vQuant0, * vQuant1; int RetValue; // get supports and quantified variables if ( p->pPars->fBackward ) { Vec_PtrReverseOrder( p->vDdMans ); vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 0, p->pPars->fVeryVerbose ); } else vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsCs, p->vVarsNs, 0, p->pPars->fVeryVerbose ); Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, p->pPars->fVeryVerbose ); Vec_VecFree( (Vec_Vec_t *)vSupps ); // remove variables Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0, p->pPars->fVeryVerbose ); // perform reachability RetValue = Llb_CoreReachability_int( p, vQuant0, vQuant1 ); Vec_VecFree( (Vec_Vec_t *)vQuant0 ); Vec_VecFree( (Vec_Vec_t *)vQuant1 ); return RetValue; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Llb_CoreConstructAll( Aig_Man_t * p, Vec_Ptr_t * vResult, Vec_Int_t * vVarsNs, abctime TimeTarget ) { DdManager * dd; Vec_Ptr_t * vDdMans; Vec_Ptr_t * vLower, * vUpper = NULL; int i; vDdMans = Vec_PtrStart( Vec_PtrSize(vResult) ); Vec_PtrForEachEntryReverse( Vec_Ptr_t *, vResult, vLower, i ) { if ( i < Vec_PtrSize(vResult) - 1 ) dd = Llb_ImgPartition( p, vLower, vUpper, TimeTarget ); else dd = Llb_DriverLastPartition( p, vVarsNs, TimeTarget ); if ( dd == NULL ) { Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i ) { if ( dd == NULL ) continue; if ( dd->bFunc ) Cudd_RecursiveDeref( dd, dd->bFunc ); Extra_StopManager( dd ); } Vec_PtrFree( vDdMans ); return NULL; } Vec_PtrWriteEntry( vDdMans, i, dd ); vUpper = vLower; } return vDdMans; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_CoreSetVarMaps( Llb_Img_t * p ) { Aig_Obj_t * pObj; int i, iVarCs, iVarNs; assert( p->vVarsCs != NULL ); assert( p->vVarsNs != NULL ); assert( p->vCs2Glo == NULL ); assert( p->vNs2Glo == NULL ); assert( p->vGlo2Cs == NULL ); assert( p->vGlo2Ns == NULL ); p->vCs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) ); p->vNs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) ); p->vGlo2Cs = Vec_IntStartFull( Aig_ManRegNum(p->pAig) ); p->vGlo2Ns = Vec_IntStartFull( Aig_ManRegNum(p->pAig) ); for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ ) { iVarCs = Vec_IntEntry( p->vVarsCs, i ); iVarNs = Vec_IntEntry( p->vVarsNs, i ); assert( iVarCs >= 0 && iVarCs < Aig_ManObjNumMax(p->pAig) ); assert( iVarNs >= 0 && iVarNs < Aig_ManObjNumMax(p->pAig) ); Vec_IntWriteEntry( p->vCs2Glo, iVarCs, i ); Vec_IntWriteEntry( p->vNs2Glo, iVarNs, i ); Vec_IntWriteEntry( p->vGlo2Cs, i, iVarCs ); Vec_IntWriteEntry( p->vGlo2Ns, i, iVarNs ); } // add mapping of the PIs Saig_ManForEachPi( p->pAig, pObj, i ) Vec_IntWriteEntry( p->vCs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Llb_Img_t * Llb_CoreStart( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars ) { Llb_Img_t * p; p = ABC_CALLOC( Llb_Img_t, 1 ); p->pInit = pInit; p->pAig = pAig; p->pPars = pPars; p->dd = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); p->ddG = Cudd_Init( Aig_ManRegNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); p->ddR = Cudd_Init( Aig_ManCiNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); Cudd_AutodynEnable( p->dd, CUDD_REORDER_SYMM_SIFT ); Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT ); Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT ); p->vRings = Vec_PtrAlloc( 100 ); p->vDriRefs = Llb_DriverCountRefs( pAig ); p->vVarsCs = Llb_DriverCollectCs( pAig ); p->vVarsNs = Llb_DriverCollectNs( pAig, p->vDriRefs ); Llb_CoreSetVarMaps( p ); return p; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_CoreStop( Llb_Img_t * p ) { DdManager * dd; DdNode * bTemp; int i; if ( p->vDdMans ) Vec_PtrForEachEntry( DdManager *, p->vDdMans, dd, i ) { if ( dd->bFunc ) Cudd_RecursiveDeref( dd, dd->bFunc ); if ( dd->bFunc2 ) Cudd_RecursiveDeref( dd, dd->bFunc2 ); Extra_StopManager( dd ); } Vec_PtrFreeP( &p->vDdMans ); if ( p->ddR->bFunc ) Cudd_RecursiveDeref( p->ddR, p->ddR->bFunc ); Vec_PtrForEachEntry( DdNode *, p->vRings, bTemp, i ) Cudd_RecursiveDeref( p->ddR, bTemp ); Vec_PtrFree( p->vRings ); Extra_StopManager( p->dd ); Extra_StopManager( p->ddG ); Extra_StopManager( p->ddR ); Vec_IntFreeP( &p->vDriRefs ); Vec_IntFreeP( &p->vVarsCs ); Vec_IntFreeP( &p->vVarsNs ); Vec_IntFreeP( &p->vCs2Glo ); Vec_IntFreeP( &p->vNs2Glo ); Vec_IntFreeP( &p->vGlo2Cs ); Vec_IntFreeP( &p->vGlo2Ns ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_CoreExperiment( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars, Vec_Ptr_t * vResult, abctime TimeTarget ) { int RetValue; Llb_Img_t * p; // printf( "\n" ); // pPars->fVerbose = 1; p = Llb_CoreStart( pInit, pAig, pPars ); p->vDdMans = Llb_CoreConstructAll( pAig, vResult, p->vVarsNs, TimeTarget ); if ( p->vDdMans == NULL ) { if ( !pPars->fSilent ) printf( "Reached timeout (%d seconds) while deriving the partitions.\n", pPars->TimeLimit ); Llb_CoreStop( p ); return -1; } RetValue = Llb_CoreReachability( p ); Llb_CoreStop( p ); return RetValue; } /**Function************************************************************* Synopsis [Finds balanced cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_ManReachMinCut( Aig_Man_t * pAig, Gia_ParLlb_t * pPars ) { extern Vec_Ptr_t * Llb_ManComputeCuts( Aig_Man_t * p, int Num, int fVerbose, int fVeryVerbose ); Vec_Ptr_t * vResult; Aig_Man_t * p; int RetValue = -1; abctime clk = Abc_Clock(); // compute time to stop pPars->TimeTarget = pPars->TimeLimit ? pPars->TimeLimit * CLOCKS_PER_SEC + Abc_Clock(): 0; p = Aig_ManDupFlopsOnly( pAig ); //Aig_ManShow( p, 0, NULL ); if ( pPars->fVerbose ) Aig_ManPrintStats( pAig ); if ( pPars->fVerbose ) Aig_ManPrintStats( p ); Aig_ManFanoutStart( p ); vResult = Llb_ManComputeCuts( p, pPars->nPartValue, pPars->fVerbose, pPars->fVeryVerbose ); if ( pPars->TimeLimit && Abc_Clock() > pPars->TimeTarget ) { if ( !pPars->fSilent ) printf( "Reached timeout (%d seconds) after partitioning.\n", pPars->TimeLimit ); Vec_VecFree( (Vec_Vec_t *)vResult ); Aig_ManFanoutStop( p ); Aig_ManCleanMarkAB( p ); Aig_ManStop( p ); return RetValue; } if ( !pPars->fSkipReach ) RetValue = Llb_CoreExperiment( pAig, p, pPars, vResult, pPars->TimeTarget ); Vec_VecFree( (Vec_Vec_t *)vResult ); Aig_ManFanoutStop( p ); Aig_ManCleanMarkAB( p ); Aig_ManStop( p ); if ( RetValue == -1 ) Abc_PrintTime( 1, "Total runtime of the min-cut-based reachability engine", Abc_Clock() - clk ); return RetValue; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END