/**CFile**************************************************************** FileName [dauTree.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [DAG-aware unmapping.] Synopsis [Canonical DSD package.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: dauTree.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "dauInt.h" #include "misc/mem/mem.h" #include "misc/util/utilTruth.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// typedef struct Dss_Fun_t_ Dss_Fun_t; struct Dss_Fun_t_ { unsigned iDsd : 26; // DSD literal unsigned nFans : 6; // fanin count unsigned char pFans[0]; // fanins }; typedef struct Dss_Ent_t_ Dss_Ent_t; struct Dss_Ent_t_ { Dss_Fun_t * pFunc; Dss_Ent_t * pNext; unsigned iDsd0 : 27; // dsd entry unsigned nWords : 5; // total word count (struct + shared) unsigned iDsd1 : 27; // dsd entry unsigned nShared: 5; // shared count unsigned char pShared[0]; // shared literals }; typedef struct Dss_Obj_t_ Dss_Obj_t; struct Dss_Obj_t_ { unsigned Id; // node ID unsigned Type : 3; // node type unsigned nSupp : 8; // variable unsigned iVar : 8; // variable unsigned nWords : 6; // variable unsigned fMark0 : 1; // user mark unsigned fMark1 : 1; // user mark unsigned nFans : 5; // fanin count unsigned pFans[0]; // fanins }; typedef struct Dss_Ntk_t_ Dss_Ntk_t; struct Dss_Ntk_t_ { int nVars; // the number of variables int nMem; // memory used int nMemAlloc; // memory allocated word * pMem; // memory array Dss_Obj_t * pRoot; // root node Vec_Ptr_t * vObjs; // internal nodes }; struct Dss_Man_t_ { int nVars; // variable number int nNonDecLimit; // limit on non-dec size int nBins; // table size unsigned * pBins; // hash table Mem_Flex_t * pMem; // memory for nodes Vec_Ptr_t * vObjs; // objects Vec_Int_t * vNexts; // next pointers Vec_Int_t * vLeaves; // temp Vec_Int_t * vCopies; // temp word ** pTtElems; // elementary TTs Dss_Ent_t ** pCache; // decomposition cache int nCache; // size of decomposition cache Mem_Flex_t * pMemEnts; // memory for cache entries int nCacheHits[2]; int nCacheMisses[2]; int nCacheEntries[2]; abctime timeBeg; abctime timeDec; abctime timeLook; abctime timeEnd; }; static inline Dss_Obj_t * Dss_Regular( Dss_Obj_t * p ) { return (Dss_Obj_t *)((ABC_PTRUINT_T)(p) & ~01); } static inline Dss_Obj_t * Dss_Not( Dss_Obj_t * p ) { return (Dss_Obj_t *)((ABC_PTRUINT_T)(p) ^ 01); } static inline Dss_Obj_t * Dss_NotCond( Dss_Obj_t * p, int c ) { return (Dss_Obj_t *)((ABC_PTRUINT_T)(p) ^ (c)); } static inline int Dss_IsComplement( Dss_Obj_t * p ) { return (int)((ABC_PTRUINT_T)(p) & 01); } static inline int Dss_EntWordNum( Dss_Ent_t * p ) { return sizeof(Dss_Ent_t) / 8 + p->nShared / 4 + ((p->nShared & 3) > 0); } static inline int Dss_FunWordNum( Dss_Fun_t * p ) { assert(p->nFans >= 2); return (p->nFans + 4) / 8 + (((p->nFans + 4) & 7) > 0); } static inline int Dss_ObjWordNum( int nFans ) { return sizeof(Dss_Obj_t) / 8 + nFans / 2 + ((nFans & 1) > 0); } static inline word * Dss_ObjTruth( Dss_Obj_t * pObj ) { return (word *)pObj + pObj->nWords; } static inline void Dss_ObjClean( Dss_Obj_t * pObj ) { memset( pObj, 0, sizeof(Dss_Obj_t) ); } static inline int Dss_ObjId( Dss_Obj_t * pObj ) { return pObj->Id; } static inline int Dss_ObjType( Dss_Obj_t * pObj ) { return pObj->Type; } static inline int Dss_ObjSuppSize( Dss_Obj_t * pObj ) { return pObj->nSupp; } static inline int Dss_ObjFaninNum( Dss_Obj_t * pObj ) { return pObj->nFans; } static inline int Dss_ObjFaninC( Dss_Obj_t * pObj, int i ) { assert(i < (int)pObj->nFans); return Abc_LitIsCompl(pObj->pFans[i]); } static inline Dss_Obj_t * Dss_VecObj( Vec_Ptr_t * p, int Id ) { return (Dss_Obj_t *)Vec_PtrEntry(p, Id); } static inline Dss_Obj_t * Dss_VecConst0( Vec_Ptr_t * p ) { return Dss_VecObj( p, 0 ); } static inline Dss_Obj_t * Dss_VecVar( Vec_Ptr_t * p, int v ) { return Dss_VecObj( p, v+1 ); } static inline int Dss_VecLitSuppSize( Vec_Ptr_t * p, int iLit ) { return Dss_VecObj( p, Abc_Lit2Var(iLit) )->nSupp; } static inline int Dss_Obj2Lit( Dss_Obj_t * pObj ) { return Abc_Var2Lit(Dss_Regular(pObj)->Id, Dss_IsComplement(pObj)); } static inline Dss_Obj_t * Dss_Lit2Obj( Vec_Ptr_t * p, int iLit ) { return Dss_NotCond(Dss_VecObj(p, Abc_Lit2Var(iLit)), Abc_LitIsCompl(iLit)); } static inline Dss_Obj_t * Dss_ObjFanin( Vec_Ptr_t * p, Dss_Obj_t * pObj, int i ) { assert(i < (int)pObj->nFans); return Dss_VecObj(p, Abc_Lit2Var(pObj->pFans[i])); } static inline Dss_Obj_t * Dss_ObjChild( Vec_Ptr_t * p, Dss_Obj_t * pObj, int i ) { assert(i < (int)pObj->nFans); return Dss_Lit2Obj(p, pObj->pFans[i]); } #define Dss_VecForEachObj( vVec, pObj, i ) \ Vec_PtrForEachEntry( Dss_Obj_t *, vVec, pObj, i ) #define Dss_VecForEachObjVec( vLits, vVec, pObj, i ) \ for ( i = 0; (i < Vec_IntSize(vLits)) && ((pObj) = Dss_Lit2Obj(vVec, Vec_IntEntry(vLits,i))); i++ ) #define Dss_VecForEachNode( vVec, pObj, i ) \ Vec_PtrForEachEntry( Dss_Obj_t *, vVec, pObj, i ) \ if ( pObj->Type == DAU_DSD_CONST0 || pObj->Type == DAU_DSD_VAR ) {} else #define Dss_ObjForEachFanin( vVec, pObj, pFanin, i ) \ for ( i = 0; (i < Dss_ObjFaninNum(pObj)) && ((pFanin) = Dss_ObjFanin(vVec, pObj, i)); i++ ) #define Dss_ObjForEachChild( vVec, pObj, pFanin, i ) \ for ( i = 0; (i < Dss_ObjFaninNum(pObj)) && ((pFanin) = Dss_ObjChild(vVec, pObj, i)); i++ ) static inline int Dss_WordCountOnes( unsigned uWord ) { uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); return (uWord & 0x0000FFFF) + (uWord>>16); } static inline int Dss_Lit2Lit( int * pMapLit, int Lit ) { return Abc_Var2Lit( Abc_Lit2Var(pMapLit[Abc_Lit2Var(Lit)]), Abc_LitIsCompl(Lit) ^ Abc_LitIsCompl(pMapLit[Abc_Lit2Var(Lit)]) ); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// #if 0 /**Function************************************************************* Synopsis [Check decomposability for 666.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // recursively collects 6-feasible supports int Dss_ObjCheck666_rec( Dss_Ntk_t * p, Dss_Obj_t * pObj, Vec_Int_t * vSupps ) { Dss_Obj_t * pFanin; int i, uSupp = 0; assert( !Dss_IsComplement(pObj) ); if ( pObj->Type == DAU_DSD_VAR ) { assert( pObj->iVar >= 0 && pObj->iVar < 30 ); return (1 << pObj->iVar); } if ( pObj->Type == DAU_DSD_AND || pObj->Type == DAU_DSD_XOR ) { int c0, c1, c2, uSuppTemp; int uSuppVars[16]; int nSuppVars = 0; int nFanins = Dss_ObjFaninNum(pObj); int uSupps[16], nSuppSizes[16]; Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) { uSupps[i] = Dss_ObjCheck666_rec( p, pFanin, vSupps ); nSuppSizes[i] = Dss_WordCountOnes( uSupps[i] ); uSupp |= uSupps[i]; if ( nSuppSizes[i] == 1 ) uSuppVars[nSuppVars++] = uSupps[i]; } // iterate through the permutations for ( c0 = 0; c0 < nFanins; c0++ ) if ( nSuppSizes[c0] > 1 && nSuppSizes[c0] < 6 ) { uSuppTemp = uSupps[c0]; for ( i = 0; i < nSuppVars; i++ ) if ( nSuppSizes[c0] + i < 6 ) uSuppTemp |= uSuppVars[i]; else break; if ( Dss_WordCountOnes(uSuppTemp) <= 6 ) Vec_IntPush( vSupps, uSuppTemp ); for ( c1 = c0 + 1; c1 < nFanins; c1++ ) if ( nSuppSizes[c1] > 1 && nSuppSizes[c1] < 6 ) { if ( nSuppSizes[c0] + nSuppSizes[c1] <= 6 ) Vec_IntPush( vSupps, uSupps[c0] | uSupps[c1] ); uSuppTemp = uSupps[c0] | uSupps[c1]; for ( i = 0; i < nSuppVars; i++ ) if ( nSuppSizes[c0] + nSuppSizes[c1] + i < 6 ) uSuppTemp |= uSuppVars[i]; else break; if ( Dss_WordCountOnes(uSuppTemp) <= 6 ) Vec_IntPush( vSupps, uSuppTemp ); for ( c2 = c1 + 1; c2 < nFanins; c2++ ) if ( nSuppSizes[c2] > 1 && nSuppSizes[c2] < 6 ) { if ( nSuppSizes[c0] + nSuppSizes[c1] + nSuppSizes[c2] <= 6 ) Vec_IntPush( vSupps, uSupps[c0] | uSupps[c1] | uSupps[c2] ); assert( nSuppSizes[c0] + nSuppSizes[c1] + nSuppSizes[c2] >= 6 ); } } } if ( nSuppVars > 1 && nSuppVars <= 6 ) { uSuppTemp = 0; for ( i = 0; i < nSuppVars; i++ ) uSuppTemp |= uSuppVars[i]; Vec_IntPush( vSupps, uSuppTemp ); } else if ( nSuppVars > 6 && nSuppVars <= 12 ) { uSuppTemp = 0; for ( i = 0; i < 6; i++ ) uSuppTemp |= uSuppVars[i]; Vec_IntPush( vSupps, uSuppTemp ); uSuppTemp = 0; for ( i = 6; i < nSuppVars; i++ ) uSuppTemp |= uSuppVars[i]; Vec_IntPush( vSupps, uSuppTemp ); } } else if ( pObj->Type == DAU_DSD_MUX || pObj->Type == DAU_DSD_PRIME ) { Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) uSupp |= Dss_ObjCheck666_rec( p, pFanin, vSupps ); } if ( Dss_WordCountOnes( uSupp ) <= 6 ) Vec_IntPush( vSupps, uSupp ); return uSupp; } int Dss_ObjCheck666( Dss_Ntk_t * p ) { Vec_Int_t * vSupps; int i, k, SuppI, SuppK; int nSupp = Dss_ObjSuppSize(Dss_Regular(p->pRoot)); if ( nSupp <= 6 ) return 1; // compute supports vSupps = Vec_IntAlloc( 100 ); Dss_ObjCheck666_rec( p, Dss_Regular(p->pRoot), vSupps ); Vec_IntUniqify( vSupps ); Vec_IntForEachEntry( vSupps, SuppI, i ) { k = Dss_WordCountOnes(SuppI); assert( k > 0 && k <= 6 ); /* for ( k = 0; k < 16; k++ ) if ( (SuppI >> k) & 1 ) printf( "%c", 'a' + k ); else printf( "-" ); printf( "\n" ); */ } // consider support pairs Vec_IntForEachEntry( vSupps, SuppI, i ) Vec_IntForEachEntryStart( vSupps, SuppK, k, i+1 ) { if ( SuppI & SuppK ) continue; if ( Dss_WordCountOnes(SuppI | SuppK) + 4 >= nSupp ) { Vec_IntFree( vSupps ); return 1; } } Vec_IntFree( vSupps ); return 0; } void Dau_DsdTest_() { /* extern Dss_Ntk_t * Dss_NtkCreate( char * pDsd, int nVars, word * pTruth ); extern void Dss_NtkFree( Dss_Ntk_t * p ); // char * pDsd = "(!(amn!(bh))[cdeij]!(fklg)o)"; char * pDsd = "<[(ab)(cd)(ef)][(gh)(ij)(kl)](mn)>"; Dss_Ntk_t * pNtk = Dss_NtkCreate( pDsd, 16, NULL ); int Status = Dss_ObjCheck666( pNtk ); Dss_NtkFree( pNtk ); */ } abctime if_dec_time; void Dau_DsdCheckStructOne( word * pTruth, int nVars, int nLeaves ) { extern Dss_Ntk_t * Dss_NtkCreate( char * pDsd, int nVars, word * pTruth ); extern void Dss_NtkFree( Dss_Ntk_t * p ); static abctime timeTt = 0; static abctime timeDsd = 0; abctime clkTt, clkDsd; char pDsd[1000]; word Truth[1024]; Dss_Ntk_t * pNtk; int Status, nNonDec; if ( pTruth == NULL ) { Abc_PrintTime( 1, "TT runtime", timeTt ); Abc_PrintTime( 1, "DSD runtime", timeDsd ); Abc_PrintTime( 1, "Total ", if_dec_time ); if_dec_time = 0; timeTt = 0; timeDsd = 0; return; } Abc_TtCopy( Truth, pTruth, Abc_TtWordNum(nVars), 0 ); nNonDec = Dau_DsdDecompose( Truth, nVars, 0, 0, pDsd ); if ( nNonDec > 0 ) return; pNtk = Dss_NtkCreate( pDsd, 16, NULL ); // measure DSD runtime clkDsd = Abc_Clock(); Status = Dss_ObjCheck666( pNtk ); timeDsd += Abc_Clock() - clkDsd; Dss_NtkFree( pNtk ); // measure TT runtime clkTt = Abc_Clock(); { #define CLU_VAR_MAX 16 // decomposition typedef struct If_Grp_t_ If_Grp_t; struct If_Grp_t_ { char nVars; char nMyu; char pVars[CLU_VAR_MAX]; }; int nLutLeaf = 6; int nLutLeaf2 = 6; int nLutRoot = 6; If_Grp_t G; If_Grp_t G2, R; word Func0, Func1, Func2; { extern If_Grp_t If_CluCheck3( void * p, word * pTruth0, int nVars, int nLutLeaf, int nLutLeaf2, int nLutRoot, If_Grp_t * pR, If_Grp_t * pG2, word * pFunc0, word * pFunc1, word * pFunc2 ); G = If_CluCheck3( NULL, pTruth, nLeaves, nLutLeaf, nLutLeaf2, nLutRoot, &R, &G2, &Func0, &Func1, &Func2 ); } } timeTt += Abc_Clock() - clkTt; } #endif /**Function************************************************************* Synopsis [Elementary truth tables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline word ** Dss_ManTtElems() { static word TtElems[DAU_MAX_VAR+1][DAU_MAX_WORD], * pTtElems[DAU_MAX_VAR+1] = {NULL}; if ( pTtElems[0] == NULL ) { int v; for ( v = 0; v <= DAU_MAX_VAR; v++ ) pTtElems[v] = TtElems[v]; Abc_TtElemInit( pTtElems, DAU_MAX_VAR ); } return pTtElems; } /**Function************************************************************* Synopsis [Creating DSD network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Dss_Obj_t * Dss_ObjAllocNtk( Dss_Ntk_t * p, int Type, int nFans, int nTruthVars ) { Dss_Obj_t * pObj; pObj = (Dss_Obj_t *)(p->pMem + p->nMem); Dss_ObjClean( pObj ); pObj->nFans = nFans; pObj->nWords = Dss_ObjWordNum( nFans ); pObj->Type = Type; pObj->Id = Vec_PtrSize( p->vObjs ); pObj->iVar = 31; Vec_PtrPush( p->vObjs, pObj ); p->nMem += pObj->nWords + (nTruthVars ? Abc_TtWordNum(nTruthVars) : 0); assert( p->nMem < p->nMemAlloc ); return pObj; } Dss_Obj_t * Dss_ObjCreateNtk( Dss_Ntk_t * p, int Type, Vec_Int_t * vFaninLits ) { Dss_Obj_t * pObj; int i, Entry; pObj = Dss_ObjAllocNtk( p, Type, Vec_IntSize(vFaninLits), Type == DAU_DSD_PRIME ? Vec_IntSize(vFaninLits) : 0 ); Vec_IntForEachEntry( vFaninLits, Entry, i ) { pObj->pFans[i] = Entry; pObj->nSupp += Dss_VecLitSuppSize(p->vObjs, Entry); } assert( i == (int)pObj->nFans ); return pObj; } Dss_Ntk_t * Dss_NtkAlloc( int nVars ) { Dss_Ntk_t * p; Dss_Obj_t * pObj; int i; p = ABC_CALLOC( Dss_Ntk_t, 1 ); p->nVars = nVars; p->nMemAlloc = DAU_MAX_STR; p->pMem = ABC_ALLOC( word, p->nMemAlloc ); p->vObjs = Vec_PtrAlloc( 100 ); Dss_ObjAllocNtk( p, DAU_DSD_CONST0, 0, 0 ); for ( i = 0; i < nVars; i++ ) { pObj = Dss_ObjAllocNtk( p, DAU_DSD_VAR, 0, 0 ); pObj->iVar = i; pObj->nSupp = 1; } return p; } void Dss_NtkFree( Dss_Ntk_t * p ) { Vec_PtrFree( p->vObjs ); ABC_FREE( p->pMem ); ABC_FREE( p ); } void Dss_NtkPrint_rec( Dss_Ntk_t * p, Dss_Obj_t * pObj ) { char OpenType[7] = {0, 0, 0, '(', '[', '<', '{'}; char CloseType[7] = {0, 0, 0, ')', ']', '>', '}'}; Dss_Obj_t * pFanin; int i; assert( !Dss_IsComplement(pObj) ); if ( pObj->Type == DAU_DSD_VAR ) { printf( "%c", 'a' + pObj->iVar ); return; } if ( pObj->Type == DAU_DSD_PRIME ) Abc_TtPrintHexRev( stdout, Dss_ObjTruth(pObj), pObj->nFans ); printf( "%c", OpenType[pObj->Type] ); Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) { printf( "%s", Dss_ObjFaninC(pObj, i) ? "!":"" ); Dss_NtkPrint_rec( p, pFanin ); } printf( "%c", CloseType[pObj->Type] ); } void Dss_NtkPrint( Dss_Ntk_t * p ) { if ( Dss_Regular(p->pRoot)->Type == DAU_DSD_CONST0 ) printf( "%d", Dss_IsComplement(p->pRoot) ); else { printf( "%s", Dss_IsComplement(p->pRoot) ? "!":"" ); if ( Dss_Regular(p->pRoot)->Type == DAU_DSD_VAR ) printf( "%c", 'a' + Dss_Regular(p->pRoot)->iVar ); else Dss_NtkPrint_rec( p, Dss_Regular(p->pRoot) ); } printf( "\n" ); } /**Function************************************************************* Synopsis [Creating DSD network from SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Dau_DsdMergeMatches( char * pDsd, int * pMatches ) { int pNested[DAU_MAX_VAR]; int i, nNested = 0; for ( i = 0; pDsd[i]; i++ ) { pMatches[i] = 0; if ( pDsd[i] == '(' || pDsd[i] == '[' || pDsd[i] == '<' || pDsd[i] == '{' ) pNested[nNested++] = i; else if ( pDsd[i] == ')' || pDsd[i] == ']' || pDsd[i] == '>' || pDsd[i] == '}' ) pMatches[pNested[--nNested]] = i; assert( nNested < DAU_MAX_VAR ); } assert( nNested == 0 ); } int Dss_NtkCreate_rec( char * pStr, char ** p, int * pMatches, Dss_Ntk_t * pNtk, word * pTruth ) { int fCompl = 0; if ( **p == '!' ) { fCompl = 1; (*p)++; } while ( (**p >= 'A' && **p <= 'F') || (**p >= '0' && **p <= '9') ) (*p)++; /* if ( **p == '<' ) { char * q = pStr + pMatches[ *p - pStr ]; if ( *(q+1) == '{' ) *p = q+1; } */ if ( **p >= 'a' && **p <= 'z' ) // var return Abc_Var2Lit( Dss_ObjId(Dss_VecVar(pNtk->vObjs, **p - 'a')), fCompl ); if ( **p == '(' || **p == '[' || **p == '<' || **p == '{' ) // and/or/xor { Dss_Obj_t * pObj; Vec_Int_t * vFaninLits = Vec_IntAlloc( 10 ); char * q = pStr + pMatches[ *p - pStr ]; int Type; if ( **p == '(' ) Type = DAU_DSD_AND; else if ( **p == '[' ) Type = DAU_DSD_XOR; else if ( **p == '<' ) Type = DAU_DSD_MUX; else if ( **p == '{' ) Type = DAU_DSD_PRIME; else assert( 0 ); assert( *q == **p + 1 + (**p != '(') ); for ( (*p)++; *p < q; (*p)++ ) Vec_IntPush( vFaninLits, Dss_NtkCreate_rec(pStr, p, pMatches, pNtk, pTruth) ); assert( *p == q ); if ( Type == DAU_DSD_PRIME ) { Vec_Int_t * vFaninLitsNew; word pTemp[DAU_MAX_WORD]; char pCanonPerm[DAU_MAX_VAR]; int i, uCanonPhase, nFanins = Vec_IntSize(vFaninLits); Abc_TtCopy( pTemp, pTruth, Abc_TtWordNum(nFanins), 0 ); uCanonPhase = Abc_TtCanonicize( pTemp, nFanins, pCanonPerm ); fCompl = (uCanonPhase >> nFanins) & 1; vFaninLitsNew = Vec_IntAlloc( nFanins ); for ( i = 0; i < nFanins; i++ ) Vec_IntPush( vFaninLitsNew, Abc_LitNotCond(Vec_IntEntry(vFaninLits, pCanonPerm[i]), (uCanonPhase>>i)&1) ); pObj = Dss_ObjCreateNtk( pNtk, DAU_DSD_PRIME, vFaninLitsNew ); Abc_TtCopy( Dss_ObjTruth(pObj), pTemp, Abc_TtWordNum(nFanins), 0 ); Vec_IntFree( vFaninLitsNew ); } else pObj = Dss_ObjCreateNtk( pNtk, Type, vFaninLits ); Vec_IntFree( vFaninLits ); return Abc_LitNotCond( Dss_Obj2Lit(pObj), fCompl ); } assert( 0 ); return -1; } Dss_Ntk_t * Dss_NtkCreate( char * pDsd, int nVars, word * pTruth ) { int fCompl = 0; Dss_Ntk_t * pNtk = Dss_NtkAlloc( nVars ); if ( *pDsd == '!' ) pDsd++, fCompl = 1; if ( Dau_DsdIsConst(pDsd) ) pNtk->pRoot = Dss_VecConst0(pNtk->vObjs); else if ( Dau_DsdIsVar(pDsd) ) pNtk->pRoot = Dss_VecVar(pNtk->vObjs, Dau_DsdReadVar(pDsd)); else { int iLit, pMatches[DAU_MAX_STR]; Dau_DsdMergeMatches( pDsd, pMatches ); iLit = Dss_NtkCreate_rec( pDsd, &pDsd, pMatches, pNtk, pTruth ); pNtk->pRoot = Dss_Lit2Obj( pNtk->vObjs, iLit ); } if ( fCompl ) pNtk->pRoot = Dss_Not(pNtk->pRoot); return pNtk; } /**Function************************************************************* Synopsis [Comparing two DSD nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Dss_ObjCompare( Vec_Ptr_t * p, Dss_Obj_t * p0i, Dss_Obj_t * p1i ) { Dss_Obj_t * p0 = Dss_Regular(p0i); Dss_Obj_t * p1 = Dss_Regular(p1i); Dss_Obj_t * pChild0, * pChild1; int i, Res; if ( Dss_ObjType(p0) < Dss_ObjType(p1) ) return -1; if ( Dss_ObjType(p0) > Dss_ObjType(p1) ) return 1; if ( Dss_ObjType(p0) < DAU_DSD_AND ) return 0; if ( Dss_ObjFaninNum(p0) < Dss_ObjFaninNum(p1) ) return -1; if ( Dss_ObjFaninNum(p0) > Dss_ObjFaninNum(p1) ) return 1; for ( i = 0; i < Dss_ObjFaninNum(p0); i++ ) { pChild0 = Dss_ObjChild( p, p0, i ); pChild1 = Dss_ObjChild( p, p1, i ); Res = Dss_ObjCompare( p, pChild0, pChild1 ); if ( Res != 0 ) return Res; } if ( Dss_IsComplement(p0i) < Dss_IsComplement(p1i) ) return -1; if ( Dss_IsComplement(p0i) > Dss_IsComplement(p1i) ) return 1; return 0; } void Dss_ObjSort( Vec_Ptr_t * p, Dss_Obj_t ** pNodes, int nNodes, int * pPerm ) { int i, j, best_i; for ( i = 0; i < nNodes-1; i++ ) { best_i = i; for ( j = i+1; j < nNodes; j++ ) if ( Dss_ObjCompare(p, pNodes[best_i], pNodes[j]) == 1 ) best_i = j; if ( i == best_i ) continue; ABC_SWAP( Dss_Obj_t *, pNodes[i], pNodes[best_i] ); if ( pPerm ) ABC_SWAP( int, pPerm[i], pPerm[best_i] ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dss_NtkCheck( Dss_Ntk_t * p ) { Dss_Obj_t * pObj, * pFanin; int i, k; Dss_VecForEachNode( p->vObjs, pObj, i ) { Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, k ) { if ( pObj->Type == DAU_DSD_AND && pFanin->Type == DAU_DSD_AND ) assert( Dss_ObjFaninC(pObj, k) ); else if ( pObj->Type == DAU_DSD_XOR ) assert( pFanin->Type != DAU_DSD_XOR ); else if ( pObj->Type == DAU_DSD_MUX ) assert( !Dss_ObjFaninC(pObj, 0) ); } } } int Dss_NtkCollectPerm_rec( Dss_Ntk_t * p, Dss_Obj_t * pObj, int * pPermDsd, int * pnPerms ) { Dss_Obj_t * pChild; int k, fCompl = Dss_IsComplement(pObj); pObj = Dss_Regular( pObj ); if ( pObj->Type == DAU_DSD_VAR ) { pPermDsd[*pnPerms] = Abc_Var2Lit(pObj->iVar, fCompl); pObj->iVar = (*pnPerms)++; return fCompl; } Dss_ObjForEachChild( p->vObjs, pObj, pChild, k ) if ( Dss_NtkCollectPerm_rec( p, pChild, pPermDsd, pnPerms ) ) pObj->pFans[k] = (unsigned char)Abc_LitRegular((int)pObj->pFans[k]); return 0; } void Dss_NtkTransform( Dss_Ntk_t * p, int * pPermDsd ) { Dss_Obj_t * pChildren[DAU_MAX_VAR]; Dss_Obj_t * pObj, * pChild; int i, k, nPerms; if ( Dss_Regular(p->pRoot)->Type == DAU_DSD_CONST0 ) return; Dss_VecForEachNode( p->vObjs, pObj, i ) { if ( pObj->Type == DAU_DSD_MUX || pObj->Type == DAU_DSD_PRIME ) continue; Dss_ObjForEachChild( p->vObjs, pObj, pChild, k ) pChildren[k] = pChild; Dss_ObjSort( p->vObjs, pChildren, Dss_ObjFaninNum(pObj), NULL ); for ( k = 0; k < Dss_ObjFaninNum(pObj); k++ ) pObj->pFans[k] = Dss_Obj2Lit( pChildren[k] ); } nPerms = 0; if ( Dss_NtkCollectPerm_rec( p, p->pRoot, pPermDsd, &nPerms ) ) p->pRoot = Dss_Regular(p->pRoot); assert( nPerms == (int)Dss_Regular(p->pRoot)->nSupp ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Dss_Obj_t * Dss_ObjAlloc( Dss_Man_t * p, int Type, int nFans, int nTruthVars ) { int nWords = Dss_ObjWordNum(nFans) + (nTruthVars ? Abc_TtWordNum(nTruthVars) : 0); Dss_Obj_t * pObj = (Dss_Obj_t *)Mem_FlexEntryFetch( p->pMem, sizeof(word) * nWords ); Dss_ObjClean( pObj ); pObj->Type = Type; pObj->nFans = nFans; pObj->nWords = Dss_ObjWordNum(nFans); pObj->Id = Vec_PtrSize( p->vObjs ); pObj->iVar = 31; Vec_PtrPush( p->vObjs, pObj ); Vec_IntPush( p->vNexts, 0 ); return pObj; } Dss_Obj_t * Dss_ObjCreate( Dss_Man_t * p, int Type, Vec_Int_t * vFaninLits, word * pTruth ) { Dss_Obj_t * pObj, * pFanin, * pPrev = NULL; int i, Entry; // check structural canonicity assert( Type != DAU_DSD_MUX || Vec_IntSize(vFaninLits) == 3 ); assert( Type != DAU_DSD_MUX || !Abc_LitIsCompl(Vec_IntEntry(vFaninLits, 0)) ); assert( Type != DAU_DSD_MUX || !Abc_LitIsCompl(Vec_IntEntry(vFaninLits, 1)) || !Abc_LitIsCompl(Vec_IntEntry(vFaninLits, 2)) ); // check that leaves are in good order if ( Type == DAU_DSD_AND || Type == DAU_DSD_XOR ) Dss_VecForEachObjVec( vFaninLits, p->vObjs, pFanin, i ) { assert( Type != DAU_DSD_AND || Abc_LitIsCompl(Vec_IntEntry(vFaninLits, i)) || Dss_ObjType(pFanin) != DAU_DSD_AND ); assert( Type != DAU_DSD_XOR || Dss_ObjType(pFanin) != DAU_DSD_XOR ); assert( pPrev == NULL || Dss_ObjCompare(p->vObjs, pPrev, pFanin) <= 0 ); pPrev = pFanin; } // create new node pObj = Dss_ObjAlloc( p, Type, Vec_IntSize(vFaninLits), Type == DAU_DSD_PRIME ? Vec_IntSize(vFaninLits) : 0 ); if ( Type == DAU_DSD_PRIME ) Abc_TtCopy( Dss_ObjTruth(pObj), pTruth, Abc_TtWordNum(Vec_IntSize(vFaninLits)), 0 ); assert( pObj->nSupp == 0 ); Vec_IntForEachEntry( vFaninLits, Entry, i ) { pObj->pFans[i] = Entry; pObj->nSupp += Dss_VecLitSuppSize(p->vObjs, Entry); } /* { extern void Dss_ManPrintOne( Dss_Man_t * p, int iDsdLit, int * pPermLits ); Dss_ManPrintOne( p, Dss_Obj2Lit(pObj), NULL ); } */ return pObj; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dss_ManHashProfile( Dss_Man_t * p ) { Dss_Obj_t * pObj; unsigned * pSpot; int i, Counter; for ( i = 0; i < p->nBins; i++ ) { Counter = 0; for ( pSpot = p->pBins + i; *pSpot; pSpot = (unsigned *)Vec_IntEntryP(p->vNexts, pObj->Id), Counter++ ) pObj = Dss_VecObj( p->vObjs, *pSpot ); if ( Counter ) printf( "%d ", Counter ); } printf( "\n" ); } static inline unsigned Dss_ObjHashKey( Dss_Man_t * p, int Type, Vec_Int_t * vFaninLits, word * pTruth ) { static int s_Primes[8] = { 1699, 4177, 5147, 5647, 6343, 7103, 7873, 8147 }; int i, Entry; unsigned uHash = Type * 7873 + Vec_IntSize(vFaninLits) * 8147; Vec_IntForEachEntry( vFaninLits, Entry, i ) uHash += Entry * s_Primes[i & 0x7]; assert( (Type == DAU_DSD_PRIME) == (pTruth != NULL) ); if ( pTruth ) { unsigned char * pTruthC = (unsigned char *)pTruth; int nBytes = Abc_TtByteNum(Vec_IntSize(vFaninLits)); for ( i = 0; i < nBytes; i++ ) uHash += pTruthC[i] * s_Primes[i & 0x7]; } return uHash % p->nBins; } unsigned * Dss_ObjHashLookup( Dss_Man_t * p, int Type, Vec_Int_t * vFaninLits, word * pTruth ) { Dss_Obj_t * pObj; unsigned * pSpot = p->pBins + Dss_ObjHashKey(p, Type, vFaninLits, pTruth); for ( ; *pSpot; pSpot = (unsigned *)Vec_IntEntryP(p->vNexts, pObj->Id) ) { pObj = Dss_VecObj( p->vObjs, *pSpot ); if ( (int)pObj->Type == Type && (int)pObj->nFans == Vec_IntSize(vFaninLits) && !memcmp(pObj->pFans, Vec_IntArray(vFaninLits), sizeof(int)*pObj->nFans) && (pTruth == NULL || !memcmp(Dss_ObjTruth(pObj), pTruth, Abc_TtByteNum(pObj->nFans))) ) // equal return pSpot; } return pSpot; } Dss_Obj_t * Dss_ObjFindOrAdd( Dss_Man_t * p, int Type, Vec_Int_t * vFaninLits, word * pTruth ) { Dss_Obj_t * pObj; unsigned * pSpot = Dss_ObjHashLookup( p, Type, vFaninLits, pTruth ); if ( *pSpot ) return Dss_VecObj( p->vObjs, *pSpot ); *pSpot = Vec_PtrSize( p->vObjs ); pObj = Dss_ObjCreate( p, Type, vFaninLits, pTruth ); return pObj; } /**Function************************************************************* Synopsis [Cache for decomposition calls.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dss_ManCacheAlloc( Dss_Man_t * p ) { assert( p->nCache == 0 ); p->nCache = Abc_PrimeCudd( 100000 ); p->pCache = ABC_CALLOC( Dss_Ent_t *, p->nCache ); } void Dss_ManCacheFree( Dss_Man_t * p ) { if ( p->pCache == NULL ) return; assert( p->nCache != 0 ); p->nCache = 0; ABC_FREE( p->pCache ); } static inline unsigned Dss_ManCacheHashKey( Dss_Man_t * p, Dss_Ent_t * pEnt ) { static int s_Primes[8] = { 1699, 4177, 5147, 5647, 6343, 7103, 7873, 8147 }; int i; unsigned uHash = pEnt->nShared * 7103 + pEnt->iDsd0 * 7873 + pEnt->iDsd1 * 8147; for ( i = 0; i < 2*(int)pEnt->nShared; i++ ) uHash += pEnt->pShared[i] * s_Primes[i & 0x7]; return uHash % p->nCache; } void Dss_ManCacheProfile( Dss_Man_t * p ) { Dss_Ent_t ** pSpot; int i, Counter; for ( i = 0; i < p->nCache; i++ ) { Counter = 0; for ( pSpot = p->pCache + i; *pSpot; pSpot = &(*pSpot)->pNext, Counter++ ) ; if ( Counter ) printf( "%d ", Counter ); } printf( "\n" ); } Dss_Ent_t ** Dss_ManCacheLookup( Dss_Man_t * p, Dss_Ent_t * pEnt ) { Dss_Ent_t ** pSpot = p->pCache + Dss_ManCacheHashKey( p, pEnt ); for ( ; *pSpot; pSpot = &(*pSpot)->pNext ) { if ( (*pSpot)->iDsd0 == pEnt->iDsd0 && (*pSpot)->iDsd1 == pEnt->iDsd1 && (*pSpot)->nShared == pEnt->nShared && !memcmp((*pSpot)->pShared, pEnt->pShared, sizeof(char)*2*pEnt->nShared) ) // equal { p->nCacheHits[pEnt->nShared!=0]++; return pSpot; } } p->nCacheMisses[pEnt->nShared!=0]++; return pSpot; } Dss_Ent_t * Dss_ManCacheCreate( Dss_Man_t * p, Dss_Ent_t * pEnt0, Dss_Fun_t * pFun0 ) { Dss_Ent_t * pEnt = (Dss_Ent_t *)Mem_FlexEntryFetch( p->pMemEnts, sizeof(word) * pEnt0->nWords ); Dss_Fun_t * pFun = (Dss_Fun_t *)Mem_FlexEntryFetch( p->pMemEnts, sizeof(word) * Dss_FunWordNum(pFun0) ); memcpy( pEnt, pEnt0, sizeof(word) * pEnt0->nWords ); memcpy( pFun, pFun0, sizeof(word) * Dss_FunWordNum(pFun0) ); pEnt->pFunc = pFun; pEnt->pNext = NULL; p->nCacheEntries[pEnt->nShared!=0]++; return pEnt; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Dss_Man_t * Dss_ManAlloc( int nVars, int nNonDecLimit ) { Dss_Man_t * p; p = ABC_CALLOC( Dss_Man_t, 1 ); p->nVars = nVars; p->nNonDecLimit = nNonDecLimit; p->nBins = Abc_PrimeCudd( 1000000 ); p->pBins = ABC_CALLOC( unsigned, p->nBins ); p->pMem = Mem_FlexStart(); p->vObjs = Vec_PtrAlloc( 10000 ); p->vNexts = Vec_IntAlloc( 10000 ); Dss_ObjAlloc( p, DAU_DSD_CONST0, 0, 0 ); Dss_ObjAlloc( p, DAU_DSD_VAR, 0, 0 )->nSupp = 1; p->vLeaves = Vec_IntAlloc( 32 ); p->vCopies = Vec_IntAlloc( 32 ); p->pTtElems = Dss_ManTtElems(); p->pMemEnts = Mem_FlexStart(); // Dss_ManCacheAlloc( p ); return p; } void Dss_ManFree( Dss_Man_t * p ) { Abc_PrintTime( 1, "Time begin ", p->timeBeg ); Abc_PrintTime( 1, "Time decomp", p->timeDec ); Abc_PrintTime( 1, "Time lookup", p->timeLook ); Abc_PrintTime( 1, "Time end ", p->timeEnd ); // Dss_ManCacheProfile( p ); Dss_ManCacheFree( p ); Mem_FlexStop( p->pMemEnts, 0 ); Vec_IntFreeP( &p->vCopies ); Vec_IntFreeP( &p->vLeaves ); Vec_IntFreeP( &p->vNexts ); Vec_PtrFreeP( &p->vObjs ); Mem_FlexStop( p->pMem, 0 ); ABC_FREE( p->pBins ); ABC_FREE( p ); } void Dss_ManPrint_rec( FILE * pFile, Dss_Man_t * p, Dss_Obj_t * pObj, int * pPermLits, int * pnSupp ) { char OpenType[7] = {0, 0, 0, '(', '[', '<', '{'}; char CloseType[7] = {0, 0, 0, ')', ']', '>', '}'}; Dss_Obj_t * pFanin; int i; assert( !Dss_IsComplement(pObj) ); if ( pObj->Type == DAU_DSD_CONST0 ) { fprintf( pFile, "0" ); return; } if ( pObj->Type == DAU_DSD_VAR ) { int iPermLit = pPermLits ? pPermLits[(*pnSupp)++] : Abc_Var2Lit((*pnSupp)++, 0); fprintf( pFile, "%s%c", Abc_LitIsCompl(iPermLit)? "!":"", 'a' + Abc_Lit2Var(iPermLit) ); return; } if ( pObj->Type == DAU_DSD_PRIME ) Abc_TtPrintHexRev( pFile, Dss_ObjTruth(pObj), pObj->nFans ); fprintf( pFile, "%c", OpenType[pObj->Type] ); Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) { fprintf( pFile, "%s", Dss_ObjFaninC(pObj, i) ? "!":"" ); Dss_ManPrint_rec( pFile, p, pFanin, pPermLits, pnSupp ); } fprintf( pFile, "%c", CloseType[pObj->Type] ); } void Dss_ManPrintOne( FILE * pFile, Dss_Man_t * p, int iDsdLit, int * pPermLits ) { int nSupp = 0; fprintf( pFile, "%6d : ", Abc_Lit2Var(iDsdLit) ); fprintf( pFile, "%2d ", Dss_VecLitSuppSize(p->vObjs, iDsdLit) ); fprintf( pFile, "%s", Abc_LitIsCompl(iDsdLit) ? "!" : "" ); Dss_ManPrint_rec( pFile, p, Dss_VecObj(p->vObjs, Abc_Lit2Var(iDsdLit)), pPermLits, &nSupp ); fprintf( pFile, "\n" ); assert( nSupp == (int)Dss_VecObj(p->vObjs, Abc_Lit2Var(iDsdLit))->nSupp ); } int Dss_ManCheckNonDec_rec( Dss_Man_t * p, Dss_Obj_t * pObj ) { Dss_Obj_t * pFanin; int i; assert( !Dss_IsComplement(pObj) ); if ( pObj->Type == DAU_DSD_CONST0 ) return 0; if ( pObj->Type == DAU_DSD_VAR ) return 0; if ( pObj->Type == DAU_DSD_PRIME ) return 1; Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) if ( Dss_ManCheckNonDec_rec( p, pFanin ) ) return 1; return 0; } void Dss_ManDump( Dss_Man_t * p ) { char * pFileName = "dss_tts.txt"; FILE * pFile; word Temp[DAU_MAX_WORD]; Dss_Obj_t * pObj; int i; pFile = fopen( pFileName, "wb" ); if ( pFile == NULL ) { printf( "Cannot open file \"%s\".\n", pFileName ); return; } Dss_VecForEachObj( p->vObjs, pObj, i ) { if ( pObj->Type != DAU_DSD_PRIME ) continue; Abc_TtCopy( Temp, Dss_ObjTruth(pObj), Abc_TtWordNum(pObj->nFans), 0 ); Abc_TtStretch6( Temp, pObj->nFans, p->nVars ); fprintf( pFile, "0x" ); Abc_TtPrintHexRev( pFile, Temp, p->nVars ); fprintf( pFile, "\n" ); // printf( "%6d : ", i ); // Abc_TtPrintHexRev( stdout, Temp, p->nVars ); // printf( " " ); // Dau_DsdPrintFromTruth( stdout, Temp, p->nVars ); } fclose( pFile ); } void Dss_ManPrint( char * pFileName, Dss_Man_t * p ) { Dss_Obj_t * pObj; int CountNonDsd = 0, CountNonDsdStr = 0; int i, clk = Abc_Clock(); FILE * pFile; pFile = pFileName ? fopen( pFileName, "wb" ) : stdout; if ( pFileName && pFile == NULL ) { printf( "cannot open output file\n" ); return; } Dss_VecForEachObj( p->vObjs, pObj, i ) { CountNonDsd += (pObj->Type == DAU_DSD_PRIME); CountNonDsdStr += Dss_ManCheckNonDec_rec( p, pObj ); } fprintf( pFile, "Total number of objects = %8d\n", Vec_PtrSize(p->vObjs) ); fprintf( pFile, "Non-DSD objects (max =%2d) = %8d\n", p->nNonDecLimit, CountNonDsd ); fprintf( pFile, "Non-DSD structures = %8d\n", CountNonDsdStr ); fprintf( pFile, "Memory used for objects = %6.2f MB.\n", 1.0*Mem_FlexReadMemUsage(p->pMem)/(1<<20) ); fprintf( pFile, "Memory used for array = %6.2f MB.\n", 1.0*sizeof(void *)*Vec_PtrCap(p->vObjs)/(1<<20) ); fprintf( pFile, "Memory used for hash table = %6.2f MB.\n", 1.0*sizeof(int)*p->nBins/(1<<20) ); fprintf( pFile, "Memory used for cache = %6.2f MB.\n", 1.0*Mem_FlexReadMemUsage(p->pMemEnts)/(1<<20) ); fprintf( pFile, "Cache hits = %8d %8d\n", p->nCacheHits[0], p->nCacheHits[1] ); fprintf( pFile, "Cache misses = %8d %8d\n", p->nCacheMisses[0], p->nCacheMisses[1] ); fprintf( pFile, "Cache entries = %8d %8d\n", p->nCacheEntries[0], p->nCacheEntries[1] ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); // Dss_ManHashProfile( p ); // Dss_ManDump( p ); // return; Dss_VecForEachObj( p->vObjs, pObj, i ) { if ( i == 50 ) break; Dss_ManPrintOne( pFile, p, Dss_Obj2Lit(pObj), NULL ); } fprintf( pFile, "\n" ); if ( pFileName ) fclose( pFile ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dss_ManComputeTruth_rec( Dss_Man_t * p, Dss_Obj_t * pObj, int nVars, word * pRes, int * pPermLits, int * pnSupp ) { Dss_Obj_t * pChild; int nWords = Abc_TtWordNum(nVars); int i, fCompl = Dss_IsComplement(pObj); pObj = Dss_Regular(pObj); if ( pObj->Type == DAU_DSD_VAR ) { int iPermLit = pPermLits[(*pnSupp)++]; assert( (*pnSupp) <= nVars ); Abc_TtCopy( pRes, p->pTtElems[Abc_Lit2Var(iPermLit)], nWords, fCompl ^ Abc_LitIsCompl(iPermLit) ); return; } if ( pObj->Type == DAU_DSD_AND || pObj->Type == DAU_DSD_XOR ) { word pTtTemp[DAU_MAX_WORD]; if ( pObj->Type == DAU_DSD_AND ) Abc_TtConst1( pRes, nWords ); else Abc_TtConst0( pRes, nWords ); Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) { Dss_ManComputeTruth_rec( p, pChild, nVars, pTtTemp, pPermLits, pnSupp ); if ( pObj->Type == DAU_DSD_AND ) Abc_TtAnd( pRes, pRes, pTtTemp, nWords, 0 ); else Abc_TtXor( pRes, pRes, pTtTemp, nWords, 0 ); } if ( fCompl ) Abc_TtNot( pRes, nWords ); return; } if ( pObj->Type == DAU_DSD_MUX ) // mux { word pTtTemp[3][DAU_MAX_WORD]; Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) Dss_ManComputeTruth_rec( p, pChild, nVars, pTtTemp[i], pPermLits, pnSupp ); assert( i == 3 ); Abc_TtMux( pRes, pTtTemp[0], pTtTemp[1], pTtTemp[2], nWords ); if ( fCompl ) Abc_TtNot( pRes, nWords ); return; } if ( pObj->Type == DAU_DSD_PRIME ) // function { word pFanins[DAU_MAX_VAR][DAU_MAX_WORD]; Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) Dss_ManComputeTruth_rec( p, pChild, nVars, pFanins[i], pPermLits, pnSupp ); Dau_DsdTruthCompose_rec( Dss_ObjTruth(pObj), pFanins, pRes, pObj->nFans, nWords ); if ( fCompl ) Abc_TtNot( pRes, nWords ); return; } assert( 0 ); } word * Dss_ManComputeTruth( Dss_Man_t * p, int iDsd, int nVars, int * pPermLits ) { Dss_Obj_t * pObj = Dss_Lit2Obj(p->vObjs, iDsd); word * pRes = p->pTtElems[DAU_MAX_VAR]; int nWords = Abc_TtWordNum( nVars ); int nSupp = 0; assert( nVars <= DAU_MAX_VAR ); if ( iDsd == 0 ) Abc_TtConst0( pRes, nWords ); else if ( iDsd == 1 ) Abc_TtConst1( pRes, nWords ); else if ( Dss_Regular(pObj)->Type == DAU_DSD_VAR ) { int iPermLit = pPermLits[nSupp++]; Abc_TtCopy( pRes, p->pTtElems[Abc_Lit2Var(iPermLit)], nWords, Abc_LitIsCompl(iDsd) ^ Abc_LitIsCompl(iPermLit) ); } else Dss_ManComputeTruth_rec( p, pObj, nVars, pRes, pPermLits, &nSupp ); assert( nSupp == (int)Dss_Regular(pObj)->nSupp ); return pRes; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // returns literal of non-shifted tree in p, corresponding to pObj in pNtk, which may be compl int Dss_NtkRebuild_rec( Dss_Man_t * p, Dss_Ntk_t * pNtk, Dss_Obj_t * pObj ) { Dss_Obj_t * pChildren[DAU_MAX_VAR]; Dss_Obj_t * pChild, * pObjNew; int i, k, fCompl = Dss_IsComplement(pObj); pObj = Dss_Regular(pObj); if ( pObj->Type == DAU_DSD_VAR ) return Abc_Var2Lit( 1, fCompl ); Dss_ObjForEachChild( pNtk->vObjs, pObj, pChild, k ) { pChildren[k] = Dss_Lit2Obj( p->vObjs, Dss_NtkRebuild_rec( p, pNtk, pChild ) ); if ( pObj->Type == DAU_DSD_XOR && Dss_IsComplement(pChildren[k]) ) pChildren[k] = Dss_Not(pChildren[k]), fCompl ^= 1; } // normalize MUX if ( pObj->Type == DAU_DSD_MUX ) { if ( Dss_IsComplement(pChildren[0]) ) { pChildren[0] = Dss_Not(pChildren[0]); ABC_SWAP( Dss_Obj_t *, pChildren[1], pChildren[2] ); } if ( Dss_IsComplement(pChildren[1]) ) { pChildren[1] = Dss_Not(pChildren[1]); pChildren[2] = Dss_Not(pChildren[2]); fCompl ^= 1; } } // shift subgraphs Vec_IntClear( p->vLeaves ); for ( i = 0; i < k; i++ ) Vec_IntPush( p->vLeaves, Dss_Obj2Lit(pChildren[i]) ); // create new graph pObjNew = Dss_ObjFindOrAdd( p, pObj->Type, p->vLeaves, pObj->Type == DAU_DSD_PRIME ? Dss_ObjTruth(pObj) : NULL ); return Abc_Var2Lit( pObjNew->Id, fCompl ); } int Dss_NtkRebuild( Dss_Man_t * p, Dss_Ntk_t * pNtk ) { assert( p->nVars == pNtk->nVars ); if ( Dss_Regular(pNtk->pRoot)->Type == DAU_DSD_CONST0 ) return Dss_IsComplement(pNtk->pRoot); if ( Dss_Regular(pNtk->pRoot)->Type == DAU_DSD_VAR ) return Abc_Var2Lit( Dss_Regular(pNtk->pRoot)->iVar + 1, Dss_IsComplement(pNtk->pRoot) ); return Dss_NtkRebuild_rec( p, pNtk, pNtk->pRoot ); } /**Function************************************************************* Synopsis [Performs DSD operation on the two literals.] Description [Returns the perm of the resulting literals. The perm size is equal to the number of support variables. The perm variables are 0-based numbers of pLits[0] followed by nLits[0]-based numbers of pLits[1].] SideEffects [] SeeAlso [] ***********************************************************************/ int Dss_ManOperation( Dss_Man_t * p, int Type, int * pLits, int nLits, unsigned char * pPerm, word * pTruth ) { Dss_Obj_t * pChildren[DAU_MAX_VAR]; Dss_Obj_t * pObj, * pChild; int i, k, nChildren = 0, fCompl = 0, fComplFan; assert( Type == DAU_DSD_AND || pPerm == NULL ); if ( Type == DAU_DSD_AND && pPerm != NULL ) { int pBegEnd[DAU_MAX_VAR]; int j, nSSize = 0; for ( k = 0; k < nLits; k++ ) { pObj = Dss_Lit2Obj(p->vObjs, pLits[k]); if ( Dss_IsComplement(pObj) || pObj->Type != DAU_DSD_AND ) { fComplFan = (Dss_Regular(pObj)->Type == DAU_DSD_VAR && Dss_IsComplement(pObj)); if ( fComplFan ) pObj = Dss_Regular(pObj); pBegEnd[nChildren] = (nSSize << 16) | (fComplFan << 8) | (nSSize + Dss_Regular(pObj)->nSupp); nSSize += Dss_Regular(pObj)->nSupp; pChildren[nChildren++] = pObj; } else Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) { fComplFan = (Dss_Regular(pChild)->Type == DAU_DSD_VAR && Dss_IsComplement(pChild)); if ( fComplFan ) pChild = Dss_Regular(pChild); pBegEnd[nChildren] = (nSSize << 16) | (fComplFan << 8) | (nSSize + Dss_Regular(pChild)->nSupp); nSSize += Dss_Regular(pChild)->nSupp; pChildren[nChildren++] = pChild; } } Dss_ObjSort( p->vObjs, pChildren, nChildren, pBegEnd ); // create permutation for ( j = i = 0; i < nChildren; i++ ) for ( k = (pBegEnd[i] >> 16); k < (pBegEnd[i] & 0xFF); k++ ) pPerm[j++] = (unsigned char)Abc_Var2Lit( k, (pBegEnd[i] >> 8) & 1 ); assert( j == nSSize ); } else if ( Type == DAU_DSD_AND ) { for ( k = 0; k < nLits; k++ ) { pObj = Dss_Lit2Obj(p->vObjs, pLits[k]); if ( Dss_IsComplement(pObj) || pObj->Type != DAU_DSD_AND ) pChildren[nChildren++] = pObj; else Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) pChildren[nChildren++] = pChild; } Dss_ObjSort( p->vObjs, pChildren, nChildren, NULL ); } else if ( Type == DAU_DSD_XOR ) { for ( k = 0; k < nLits; k++ ) { fCompl ^= Abc_LitIsCompl(pLits[k]); pObj = Dss_Lit2Obj(p->vObjs, Abc_LitRegular(pLits[k])); if ( pObj->Type != DAU_DSD_XOR ) pChildren[nChildren++] = pObj; else Dss_ObjForEachChild( p->vObjs, pObj, pChild, i ) { assert( !Dss_IsComplement(pChild) ); pChildren[nChildren++] = pChild; } } Dss_ObjSort( p->vObjs, pChildren, nChildren, NULL ); } else if ( Type == DAU_DSD_MUX ) { if ( Abc_LitIsCompl(pLits[0]) ) { pLits[0] = Abc_LitNot(pLits[0]); ABC_SWAP( int, pLits[1], pLits[2] ); } if ( Abc_LitIsCompl(pLits[1]) ) { pLits[1] = Abc_LitNot(pLits[1]); pLits[2] = Abc_LitNot(pLits[2]); fCompl ^= 1; } for ( k = 0; k < nLits; k++ ) pChildren[nChildren++] = Dss_Lit2Obj(p->vObjs, pLits[k]); } else if ( Type == DAU_DSD_PRIME ) { for ( k = 0; k < nLits; k++ ) pChildren[nChildren++] = Dss_Lit2Obj(p->vObjs, pLits[k]); } else assert( 0 ); // shift subgraphs Vec_IntClear( p->vLeaves ); for ( i = 0; i < nChildren; i++ ) Vec_IntPush( p->vLeaves, Dss_Obj2Lit(pChildren[i]) ); // create new graph pObj = Dss_ObjFindOrAdd( p, Type, p->vLeaves, pTruth ); return Abc_Var2Lit( pObj->Id, fCompl ); } Dss_Fun_t * Dss_ManOperationFun( Dss_Man_t * p, int * iDsd, int nFansTot ) { static char Buffer[100]; Dss_Fun_t * pFun = (Dss_Fun_t *)Buffer; pFun->iDsd = Dss_ManOperation( p, DAU_DSD_AND, iDsd, 2, pFun->pFans, NULL ); //printf( "%d %d -> %d ", iDsd[0], iDsd[1], pFun->iDsd ); pFun->nFans = nFansTot; assert( (int)pFun->nFans == Dss_VecLitSuppSize(p->vObjs, pFun->iDsd) ); return pFun; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dss_EntPrint( Dss_Ent_t * p, Dss_Fun_t * pFun ) { int i; printf( "%d %d ", p->iDsd0, p->iDsd1 ); for ( i = 0; i < (int)p->nShared; i++ ) printf( "%d=%d ", p->pShared[2*i], p->pShared[2*i+1] ); printf( "-> %d ", pFun->iDsd ); } /**Function************************************************************* Synopsis [Performs AND on two DSD functions with support overlap.] Description [Returns the perm of the resulting literals. The perm size is equal to the number of support variables. The perm variables are 0-based numbers of pLits[0] followed by nLits[0]-based numbers of pLits[1].] SideEffects [] SeeAlso [] ***********************************************************************/ Dss_Fun_t * Dss_ManBooleanAnd( Dss_Man_t * p, Dss_Ent_t * pEnt, int Counter ) { static char Buffer[100]; Dss_Fun_t * pFun = (Dss_Fun_t *)Buffer; Dss_Ntk_t * pNtk; word * pTruthOne, pTruth[DAU_MAX_WORD]; char pDsd[DAU_MAX_STR]; int pMapDsd2Truth[DAU_MAX_VAR]; int pPermLits[DAU_MAX_VAR]; int pPermDsd[DAU_MAX_VAR]; int i, nNonDec, nSuppSize = 0; int nFans[2]; nFans[0] = Dss_VecLitSuppSize( p->vObjs, pEnt->iDsd0 ); nFans[1] = Dss_VecLitSuppSize( p->vObjs, pEnt->iDsd1 ); // create first truth table for ( i = 0; i < nFans[0]; i++ ) { pMapDsd2Truth[nSuppSize] = i; pPermLits[i] = Abc_Var2Lit( nSuppSize++, 0 ); } pTruthOne = Dss_ManComputeTruth( p, pEnt->iDsd0, p->nVars, pPermLits ); Abc_TtCopy( pTruth, pTruthOne, Abc_TtWordNum(p->nVars), 0 ); if ( Counter ) { //Kit_DsdPrintFromTruth( pTruthOne, p->nVars ); printf( "\n" ); } // create second truth table for ( i = 0; i < nFans[1]; i++ ) pPermLits[i] = -1; for ( i = 0; i < (int)pEnt->nShared; i++ ) pPermLits[pEnt->pShared[2*i+0]] = pEnt->pShared[2*i+1]; for ( i = 0; i < nFans[1]; i++ ) if ( pPermLits[i] == -1 ) { pMapDsd2Truth[nSuppSize] = nFans[0] + i; pPermLits[i] = Abc_Var2Lit( nSuppSize++, 0 ); } pTruthOne = Dss_ManComputeTruth( p, pEnt->iDsd1, p->nVars, pPermLits ); if ( Counter ) { //Kit_DsdPrintFromTruth( pTruthOne, p->nVars ); printf( "\n" ); } Abc_TtAnd( pTruth, pTruth, pTruthOne, Abc_TtWordNum(p->nVars), 0 ); // perform decomposition nNonDec = Dau_DsdDecompose( pTruth, nSuppSize, 0, 0, pDsd ); if ( p->nNonDecLimit && nNonDec > p->nNonDecLimit ) return NULL; // derive network and convert it into the manager pNtk = Dss_NtkCreate( pDsd, p->nVars, nNonDec ? pTruth : NULL ); //Dss_NtkPrint( pNtk ); Dss_NtkCheck( pNtk ); Dss_NtkTransform( pNtk, pPermDsd ); //Dss_NtkPrint( pNtk ); pFun->iDsd = Dss_NtkRebuild( p, pNtk ); Dss_NtkFree( pNtk ); // pPermDsd maps vars of iDsdRes into literals of pTruth // translate this map into the one that maps vars of iDsdRes into literals of cut pFun->nFans = Dss_VecLitSuppSize( p->vObjs, pFun->iDsd ); for ( i = 0; i < (int)pFun->nFans; i++ ) pFun->pFans[i] = (unsigned char)Abc_Lit2LitV( pMapDsd2Truth, pPermDsd[i] ); // Dss_EntPrint( pEnt, pFun ); return pFun; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // returns mapping of variables of dsd1 into literals of dsd0 Dss_Ent_t * Dss_ManSharedMap( Dss_Man_t * p, int * iDsd, int * nFans, int ** pFans, unsigned uSharedMask ) { static char Buffer[100]; Dss_Ent_t * pEnt = (Dss_Ent_t *)Buffer; pEnt->iDsd0 = iDsd[0]; pEnt->iDsd1 = iDsd[1]; pEnt->nShared = 0; if ( uSharedMask ) { int i, g, pMapGtoL[DAU_MAX_VAR] = {-1}; for ( i = 0; i < nFans[0]; i++ ) pMapGtoL[ Abc_Lit2Var(pFans[0][i]) ] = Abc_Var2Lit( i, Abc_LitIsCompl(pFans[0][i]) ); for ( i = 0; i < nFans[1]; i++ ) { g = Abc_Lit2Var( pFans[1][i] ); if ( (uSharedMask >> g) & 1 ) { assert( pMapGtoL[g] >= 0 ); pEnt->pShared[2*pEnt->nShared+0] = (unsigned char)i; pEnt->pShared[2*pEnt->nShared+1] = (unsigned char)Abc_LitNotCond( pMapGtoL[g], Abc_LitIsCompl(pFans[1][i]) ); pEnt->nShared++; } } } pEnt->nWords = Dss_EntWordNum( pEnt ); return pEnt; } // merge two DSD functions int Dss_ManMerge( Dss_Man_t * p, int * iDsd, int * nFans, int ** pFans, unsigned uSharedMask, int nKLutSize, unsigned char * pPermRes, word * pTruth ) { int fVerbose = 0; int fCheck = 0; static int Counter = 0; // word pTtTemp[DAU_MAX_WORD]; word * pTruthOne; int pPermResInt[DAU_MAX_VAR]; Dss_Ent_t * pEnt, ** ppSpot; Dss_Fun_t * pFun; int i; abctime clk; Counter++; if ( DAU_MAX_VAR < nKLutSize ) { printf( "Paramater DAU_MAX_VAR (%d) smaller than LUT size (%d).\n", DAU_MAX_VAR, nKLutSize ); return -1; } assert( iDsd[0] <= iDsd[1] ); if ( fVerbose ) { Dss_ManPrintOne( stdout, p, iDsd[0], pFans[0] ); Dss_ManPrintOne( stdout, p, iDsd[1], pFans[1] ); } // constant argument if ( iDsd[0] == 0 ) return 0; if ( iDsd[0] == 1 ) return iDsd[1]; if ( iDsd[1] == 0 ) return 0; if ( iDsd[1] == 1 ) return iDsd[0]; // no overlap clk = Abc_Clock(); assert( nFans[0] == Dss_VecLitSuppSize(p->vObjs, iDsd[0]) ); assert( nFans[1] == Dss_VecLitSuppSize(p->vObjs, iDsd[1]) ); assert( nFans[0] + nFans[1] <= nKLutSize + Dss_WordCountOnes(uSharedMask) ); // create map of shared variables pEnt = Dss_ManSharedMap( p, iDsd, nFans, pFans, uSharedMask ); p->timeBeg += Abc_Clock() - clk; // check cache if ( p->pCache == NULL ) { clk = Abc_Clock(); if ( uSharedMask == 0 ) pFun = Dss_ManOperationFun( p, iDsd, nFans[0] + nFans[1] ); else pFun = Dss_ManBooleanAnd( p, pEnt, 0 ); if ( pFun == NULL ) return -1; assert( (int)pFun->nFans == Dss_VecLitSuppSize(p->vObjs, pFun->iDsd) ); assert( (int)pFun->nFans <= nKLutSize ); p->timeDec += Abc_Clock() - clk; } else { clk = Abc_Clock(); ppSpot = Dss_ManCacheLookup( p, pEnt ); p->timeLook += Abc_Clock() - clk; clk = Abc_Clock(); if ( *ppSpot == NULL ) { if ( uSharedMask == 0 ) pFun = Dss_ManOperationFun( p, iDsd, nFans[0] + nFans[1] ); else pFun = Dss_ManBooleanAnd( p, pEnt, 0 ); if ( pFun == NULL ) return -1; assert( (int)pFun->nFans == Dss_VecLitSuppSize(p->vObjs, pFun->iDsd) ); assert( (int)pFun->nFans <= nKLutSize ); // create cache entry *ppSpot = Dss_ManCacheCreate( p, pEnt, pFun ); } pFun = (*ppSpot)->pFunc; p->timeDec += Abc_Clock() - clk; } clk = Abc_Clock(); for ( i = 0; i < (int)pFun->nFans; i++ ) if ( pFun->pFans[i] < 2 * nFans[0] ) // first dec pPermRes[i] = (unsigned char)Dss_Lit2Lit( pFans[0], pFun->pFans[i] ); else pPermRes[i] = (unsigned char)Dss_Lit2Lit( pFans[1], pFun->pFans[i] - 2 * nFans[0] ); // perform support minimization if ( uSharedMask && pFun->nFans > 1 ) { int pVarPres[DAU_MAX_VAR]; int nSupp = 0; for ( i = 0; i < p->nVars; i++ ) pVarPres[i] = -1; for ( i = 0; i < (int)pFun->nFans; i++ ) pVarPres[ Abc_Lit2Var(pPermRes[i]) ] = i; for ( i = 0; i < p->nVars; i++ ) if ( pVarPres[i] >= 0 ) pPermRes[pVarPres[i]] = Abc_Var2Lit( nSupp++, Abc_LitIsCompl(pPermRes[pVarPres[i]]) ); assert( nSupp == (int)pFun->nFans ); } for ( i = 0; i < (int)pFun->nFans; i++ ) pPermResInt[i] = pPermRes[i]; p->timeEnd += Abc_Clock() - clk; if ( fVerbose ) { Dss_ManPrintOne( stdout, p, pFun->iDsd, pPermResInt ); printf( "\n" ); } if ( Counter == 43418 ) { // int s = 0; // Dss_ManPrint( NULL, p ); } if ( fCheck ) { pTruthOne = Dss_ManComputeTruth( p, pFun->iDsd, p->nVars, pPermResInt ); if ( !Abc_TtEqual( pTruthOne, pTruth, Abc_TtWordNum(p->nVars) ) ) { int s; // Kit_DsdPrintFromTruth( pTruthOne, p->nVars ); printf( "\n" ); // Kit_DsdPrintFromTruth( pTruth, p->nVars ); printf( "\n" ); printf( "Verification failed.\n" ); s = 0; } } return pFun->iDsd; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Dss_Ent_t * Dss_ManSharedMapDerive( Dss_Man_t * p, int iDsd0, int iDsd1, Vec_Str_t * vShared ) { static char Buffer[100]; Dss_Ent_t * pEnt = (Dss_Ent_t *)Buffer; pEnt->iDsd0 = iDsd0; pEnt->iDsd1 = iDsd1; pEnt->nShared = Vec_StrSize(vShared)/2; memcpy( pEnt->pShared, (unsigned char *)Vec_StrArray(vShared), sizeof(char) * Vec_StrSize(vShared) ); pEnt->nWords = Dss_EntWordNum( pEnt ); return pEnt; } int Mpm_FuncCompute( Dss_Man_t * p, int iDsd0, int iDsd1, Vec_Str_t * vShared, int * pPerm, int * pnLeaves ) { int fVerbose = 0; // int fCheck = 0; Dss_Ent_t * pEnt, ** ppSpot; Dss_Fun_t * pFun; int iDsd[2] = { iDsd0, iDsd1 }; int i; abctime clk; assert( iDsd0 <= iDsd1 ); if ( DAU_MAX_VAR < *pnLeaves ) { printf( "Paramater DAU_MAX_VAR (%d) smaller than LUT size (%d).\n", DAU_MAX_VAR, *pnLeaves ); return -1; } if ( fVerbose ) { Dss_ManPrintOne( stdout, p, iDsd0, NULL ); Dss_ManPrintOne( stdout, p, iDsd1, NULL ); } clk = Abc_Clock(); pEnt = Dss_ManSharedMapDerive( p, iDsd0, iDsd1, vShared ); ppSpot = Dss_ManCacheLookup( p, pEnt ); p->timeLook += Abc_Clock() - clk; clk = Abc_Clock(); if ( *ppSpot == NULL ) { if ( Vec_StrSize(vShared) == 0 ) pFun = Dss_ManOperationFun( p, iDsd, *pnLeaves ); else pFun = Dss_ManBooleanAnd( p, pEnt, 0 ); if ( pFun == NULL ) return -1; assert( (int)pFun->nFans == Dss_VecLitSuppSize(p->vObjs, pFun->iDsd) ); assert( (int)pFun->nFans <= *pnLeaves ); // create cache entry *ppSpot = Dss_ManCacheCreate( p, pEnt, pFun ); } pFun = (*ppSpot)->pFunc; p->timeDec += Abc_Clock() - clk; *pnLeaves = (int)pFun->nFans; for ( i = 0; i < (int)pFun->nFans; i++ ) pPerm[i] = (int)pFun->pFans[i]; if ( fVerbose ) { Dss_ManPrintOne( stdout, p, pFun->iDsd, NULL ); printf( "\n" ); } /* if ( fCheck ) { pTruthOne = Dss_ManComputeTruth( p, pFun->iDsd, p->nVars, pPermResInt ); if ( !Abc_TtEqual( pTruthOne, pTruth, Abc_TtWordNum(p->nVars) ) ) { int s; // Kit_DsdPrintFromTruth( pTruthOne, p->nVars ); printf( "\n" ); // Kit_DsdPrintFromTruth( pTruth, p->nVars ); printf( "\n" ); printf( "Verification failed.\n" ); s = 0; } } */ return pFun->iDsd; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Dss_ObjCheckTransparent( Dss_Man_t * p, Dss_Obj_t * pObj ) { Dss_Obj_t * pFanin; int i; if ( pObj->Type == DAU_DSD_VAR ) return 1; if ( pObj->Type == DAU_DSD_AND ) return 0; if ( pObj->Type == DAU_DSD_XOR ) { Dss_ObjForEachFanin( p->vObjs, pObj, pFanin, i ) if ( Dss_ObjCheckTransparent( p, pFanin ) ) return 1; return 0; } if ( pObj->Type == DAU_DSD_MUX ) { pFanin = Dss_ObjFanin( p->vObjs, pObj, 1 ); if ( !Dss_ObjCheckTransparent(p, pFanin) ) return 0; pFanin = Dss_ObjFanin( p->vObjs, pObj, 2 ); if ( !Dss_ObjCheckTransparent(p, pFanin) ) return 0; return 1; } assert( pObj->Type == DAU_DSD_PRIME ); return 0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dau_DsdTest__() { int nVars = 8; // char * pDsd = "[(ab)(cd)]"; char * pDsd = "(!(a!(bh))[cde]!(fg))"; Dss_Ntk_t * pNtk = Dss_NtkCreate( pDsd, nVars, NULL ); // Dss_NtkPrint( pNtk ); // Dss_NtkCheck( pNtk ); // Dss_NtkTransform( pNtk ); // Dss_NtkPrint( pNtk ); Dss_NtkFree( pNtk ); nVars = 0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dau_DsdTest() { int nVars = 8; Vec_Vec_t * vFuncs; Vec_Int_t * vOne, * vTwo, * vRes;//, * vThree; Dss_Man_t * p; int pEntries[3]; int iLit, e0, e1;//, e2; int i, k, s;//, j; return; vFuncs = Vec_VecStart( nVars+1 ); assert( nVars < DAU_MAX_VAR ); p = Dss_ManAlloc( nVars, 0 ); // init Vec_VecPushInt( vFuncs, 1, Dss_Obj2Lit(Dss_VecVar(p->vObjs,0)) ); // enumerate for ( s = 2; s <= nVars; s++ ) { vRes = Vec_VecEntryInt( vFuncs, s ); for ( i = 1; i < s; i++ ) for ( k = i; k < s; k++ ) if ( i + k == s ) { vOne = Vec_VecEntryInt( vFuncs, i ); vTwo = Vec_VecEntryInt( vFuncs, k ); Vec_IntForEachEntry( vOne, pEntries[0], e0 ) Vec_IntForEachEntry( vTwo, pEntries[1], e1 ) { int fAddInv0 = !Dss_ObjCheckTransparent( p, Dss_VecObj(p->vObjs, Abc_Lit2Var(pEntries[0])) ); int fAddInv1 = !Dss_ObjCheckTransparent( p, Dss_VecObj(p->vObjs, Abc_Lit2Var(pEntries[1])) ); iLit = Dss_ManOperation( p, DAU_DSD_AND, pEntries, 2, NULL, NULL ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); if ( fAddInv0 ) { pEntries[0] = Abc_LitNot( pEntries[0] ); iLit = Dss_ManOperation( p, DAU_DSD_AND, pEntries, 2, NULL, NULL ); pEntries[0] = Abc_LitNot( pEntries[0] ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); } if ( fAddInv1 ) { pEntries[1] = Abc_LitNot( pEntries[1] ); iLit = Dss_ManOperation( p, DAU_DSD_AND, pEntries, 2, NULL, NULL ); pEntries[1] = Abc_LitNot( pEntries[1] ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); } if ( fAddInv0 && fAddInv1 ) { pEntries[0] = Abc_LitNot( pEntries[0] ); pEntries[1] = Abc_LitNot( pEntries[1] ); iLit = Dss_ManOperation( p, DAU_DSD_AND, pEntries, 2, NULL, NULL ); pEntries[0] = Abc_LitNot( pEntries[0] ); pEntries[1] = Abc_LitNot( pEntries[1] ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); } iLit = Dss_ManOperation( p, DAU_DSD_XOR, pEntries, 2, NULL, NULL ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, Abc_LitRegular(iLit) ); } } /* for ( i = 1; i < s; i++ ) for ( k = 1; k < s; k++ ) for ( j = 1; j < s; j++ ) if ( i + k + j == s ) { vOne = Vec_VecEntryInt( vFuncs, i ); vTwo = Vec_VecEntryInt( vFuncs, k ); vThree = Vec_VecEntryInt( vFuncs, j ); Vec_IntForEachEntry( vOne, pEntries[0], e0 ) Vec_IntForEachEntry( vTwo, pEntries[1], e1 ) Vec_IntForEachEntry( vThree, pEntries[2], e2 ) { int fAddInv0 = !Dss_ObjCheckTransparent( p, Dss_VecObj(p->vObjs, Abc_Lit2Var(pEntries[0])) ); int fAddInv1 = !Dss_ObjCheckTransparent( p, Dss_VecObj(p->vObjs, Abc_Lit2Var(pEntries[1])) ); int fAddInv2 = !Dss_ObjCheckTransparent( p, Dss_VecObj(p->vObjs, Abc_Lit2Var(pEntries[2])) ); if ( !fAddInv0 && k > j ) continue; iLit = Dss_ManOperation( p, DAU_DSD_MUX, pEntries, 3, NULL, NULL ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); if ( fAddInv1 ) { pEntries[1] = Abc_LitNot( pEntries[1] ); iLit = Dss_ManOperation( p, DAU_DSD_MUX, pEntries, 3, NULL, NULL ); pEntries[1] = Abc_LitNot( pEntries[1] ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); } if ( fAddInv2 ) { pEntries[2] = Abc_LitNot( pEntries[2] ); iLit = Dss_ManOperation( p, DAU_DSD_MUX, pEntries, 3, NULL, NULL ); pEntries[2] = Abc_LitNot( pEntries[2] ); assert( !Abc_LitIsCompl(iLit) ); Vec_IntPush( vRes, iLit ); } } } */ Vec_IntUniqify( vRes ); } Dss_ManPrint( "_npn/npn/dsdcanon.txt", p ); Dss_ManFree( p ); Vec_VecFree( vFuncs ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dau_DsdTest444() { Dss_Man_t * p = Dss_ManAlloc( 6, 0 ); int iLit1[3] = { 2, 4 }; int iLit2[3] = { 2, 4, 6 }; int iRes[5]; int nFans[2] = { 4, 3 }; int pPermLits1[4] = { 0, 2, 5, 6 }; int pPermLits2[5] = { 2, 9, 10 }; int * pPermLits[2] = { pPermLits1, pPermLits2 }; unsigned char pPermRes[6]; int pPermResInt[6]; unsigned uMaskShared = 2; int i; iRes[0] = 1 ^ Dss_ManOperation( p, DAU_DSD_AND, iLit1, 2, NULL, NULL ); iRes[1] = iRes[0]; iRes[2] = 1 ^ Dss_ManOperation( p, DAU_DSD_AND, iRes, 2, NULL, NULL ); iRes[3] = Dss_ManOperation( p, DAU_DSD_AND, iLit2, 3, NULL, NULL ); Dss_ManPrintOne( stdout, p, iRes[0], NULL ); Dss_ManPrintOne( stdout, p, iRes[2], NULL ); Dss_ManPrintOne( stdout, p, iRes[3], NULL ); Dss_ManPrintOne( stdout, p, iRes[2], pPermLits1 ); Dss_ManPrintOne( stdout, p, iRes[3], pPermLits2 ); iRes[4] = Dss_ManMerge( p, iRes+2, nFans, pPermLits, uMaskShared, 6, pPermRes, NULL ); for ( i = 0; i < 6; i++ ) pPermResInt[i] = pPermRes[i]; Dss_ManPrintOne( stdout, p, iRes[4], NULL ); Dss_ManPrintOne( stdout, p, iRes[4], pPermResInt ); Dss_ManFree( p ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END