/**CFile**************************************************************** FileName [sclUpsize.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Standard-cell library representation.] Synopsis [Selective increase of gate sizes.] Author [Alan Mishchenko, Niklas Een] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - August 24, 2012.] Revision [$Id: sclUpsize.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sclSize.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Collect TFO of nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclFindTFO_rec( Abc_Obj_t * pObj, Vec_Int_t * vNodes, Vec_Int_t * vCos ) { Abc_Obj_t * pNext; int i; if ( Abc_NodeIsTravIdCurrent( pObj ) ) return; Abc_NodeSetTravIdCurrent( pObj ); if ( Abc_ObjIsCo(pObj) ) { Vec_IntPush( vCos, Abc_ObjId(pObj) ); return; } assert( Abc_ObjIsNode(pObj) ); Abc_ObjForEachFanout( pObj, pNext, i ) Abc_SclFindTFO_rec( pNext, vNodes, vCos ); if ( Abc_ObjFaninNum(pObj) > 0 ) Vec_IntPush( vNodes, Abc_ObjId(pObj) ); } Vec_Int_t * Abc_SclFindTFO( Abc_Ntk_t * p, Vec_Int_t * vPath ) { Vec_Int_t * vNodes, * vCos; Abc_Obj_t * pObj, * pFanin; int i, k; assert( Vec_IntSize(vPath) > 0 ); vCos = Vec_IntAlloc( 100 ); vNodes = Vec_IntAlloc( 100 ); // collect nodes in the TFO Abc_NtkIncrementTravId( p ); Abc_NtkForEachObjVec( vPath, p, pObj, i ) Abc_ObjForEachFanin( pObj, pFanin, k ) if ( Abc_ObjIsNode(pFanin) ) Abc_SclFindTFO_rec( pFanin, vNodes, vCos ); // reverse order Vec_IntReverseOrder( vNodes ); // Vec_IntSort( vNodes, 0 ); //Vec_IntPrint( vNodes ); //Vec_IntPrint( vCos ); Vec_IntAppend( vNodes, vCos ); Vec_IntFree( vCos ); return vNodes; } /**Function************************************************************* Synopsis [Collect near-critical COs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Abc_SclFindCriticalCoWindow( SC_Man * p, int Window ) { float fMaxArr = Abc_SclReadMaxDelay( p ) * (100.0 - Window) / 100.0; Vec_Int_t * vPivots; Abc_Obj_t * pObj; int i; vPivots = Vec_IntAlloc( 100 ); Abc_NtkForEachCo( p->pNtk, pObj, i ) if ( Abc_SclObjTimeMax(p, pObj) >= fMaxArr ) Vec_IntPush( vPivots, Abc_ObjId(pObj) ); assert( Vec_IntSize(vPivots) > 0 ); return vPivots; } /**Function************************************************************* Synopsis [Collect near-critical internal nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclFindCriticalNodeWindow_rec( SC_Man * p, Abc_Obj_t * pObj, Vec_Int_t * vPath, float fSlack, int fDept ) { Abc_Obj_t * pNext; float fArrMax, fSlackFan; int i; if ( Abc_ObjIsCi(pObj) ) return; if ( Abc_NodeIsTravIdCurrent( pObj ) ) return; Abc_NodeSetTravIdCurrent( pObj ); assert( Abc_ObjIsNode(pObj) ); // compute the max arrival time of the fanins if ( fDept ) // fArrMax = p->pSlack[Abc_ObjId(pObj)]; fArrMax = Abc_SclObjGetSlack(p, pObj, p->MaxDelay); else fArrMax = Abc_SclGetMaxDelayNodeFanins( p, pObj ); // assert( fArrMax >= -1 ); fArrMax = Abc_MaxFloat( fArrMax, 0 ); // traverse all fanins whose arrival times are within a window Abc_ObjForEachFanin( pObj, pNext, i ) { if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 ) continue; assert( Abc_ObjIsNode(pNext) ); if ( fDept ) // fSlackFan = fSlack - (p->pSlack[Abc_ObjId(pNext)] - fArrMax); fSlackFan = fSlack - (Abc_SclObjGetSlack(p, pNext, p->MaxDelay) - fArrMax); else fSlackFan = fSlack - (fArrMax - Abc_SclObjTimeMax(p, pNext)); if ( fSlackFan >= 0 ) Abc_SclFindCriticalNodeWindow_rec( p, pNext, vPath, fSlackFan, fDept ); } if ( Abc_ObjFaninNum(pObj) > 0 ) Vec_IntPush( vPath, Abc_ObjId(pObj) ); } Vec_Int_t * Abc_SclFindCriticalNodeWindow( SC_Man * p, Vec_Int_t * vPathCos, int Window, int fDept ) { float fMaxArr = Abc_SclReadMaxDelay( p ); float fSlackMax = fMaxArr * Window / 100.0; Vec_Int_t * vPath = Vec_IntAlloc( 100 ); Abc_Obj_t * pObj; int i; Abc_NtkIncrementTravId( p->pNtk ); Abc_NtkForEachObjVec( vPathCos, p->pNtk, pObj, i ) { float fSlackThis = fSlackMax - (fMaxArr - Abc_SclObjTimeMax(p, pObj)); if ( fSlackThis >= 0 ) Abc_SclFindCriticalNodeWindow_rec( p, Abc_ObjFanin0(pObj), vPath, fSlackThis, fDept ); } // label critical nodes Abc_NtkForEachObjVec( vPathCos, p->pNtk, pObj, i ) pObj->fMarkA = 1; Abc_NtkForEachObjVec( vPath, p->pNtk, pObj, i ) pObj->fMarkA = 1; return vPath; } void Abc_SclUnmarkCriticalNodeWindow( SC_Man * p, Vec_Int_t * vPath ) { Abc_Obj_t * pObj; int i; Abc_NtkForEachObjVec( vPath, p->pNtk, pObj, i ) pObj->fMarkA = 0; } int Abc_SclCountNearCriticalNodes( SC_Man * p ) { int RetValue; Vec_Int_t * vPathPos, * vPathNodes; vPathPos = Abc_SclFindCriticalCoWindow( p, 5 ); vPathNodes = Abc_SclFindCriticalNodeWindow( p, vPathPos, 5, 0 ); RetValue = Vec_IntSize(vPathNodes); Abc_SclUnmarkCriticalNodeWindow( p, vPathNodes ); Abc_SclUnmarkCriticalNodeWindow( p, vPathPos ); Vec_IntFree( vPathPos ); Vec_IntFree( vPathNodes ); return RetValue; } /**Function************************************************************* Synopsis [Find the array of nodes to be updated.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclFindNodesToUpdate( Abc_Obj_t * pPivot, Vec_Int_t ** pvNodes, Vec_Int_t ** pvEvals, Abc_Obj_t * pExtra ) { Abc_Ntk_t * p = Abc_ObjNtk(pPivot); Abc_Obj_t * pObj, * pNext, * pNext2; Vec_Int_t * vNodes = *pvNodes; Vec_Int_t * vEvals = *pvEvals; int i, k; assert( Abc_ObjIsNode(pPivot) ); assert( pPivot->fMarkA ); // collect fanins, node, and fanouts Vec_IntClear( vNodes ); Abc_ObjForEachFanin( pPivot, pNext, i ) // if ( Abc_ObjIsNode(pNext) && Abc_ObjFaninNum(pNext) > 0 ) if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) > 0 ) Vec_IntPush( vNodes, Abc_ObjId(pNext) ); Vec_IntPush( vNodes, Abc_ObjId(pPivot) ); if ( pExtra ) Vec_IntPush( vNodes, Abc_ObjId(pExtra) ); Abc_ObjForEachFanout( pPivot, pNext, i ) if ( Abc_ObjIsNode(pNext) && pNext->fMarkA ) { Vec_IntPush( vNodes, Abc_ObjId(pNext) ); Abc_ObjForEachFanout( pNext, pNext2, k ) if ( Abc_ObjIsNode(pNext2) && pNext2->fMarkA ) Vec_IntPush( vNodes, Abc_ObjId(pNext2) ); } Vec_IntUniqify( vNodes ); // label nodes Abc_NtkForEachObjVec( vNodes, p, pObj, i ) { assert( pObj->fMarkB == 0 ); pObj->fMarkB = 1; } // collect nodes visible from the critical paths Vec_IntClear( vEvals ); Abc_NtkForEachObjVec( vNodes, p, pObj, i ) Abc_ObjForEachFanout( pObj, pNext, k ) if ( pNext->fMarkA && !pNext->fMarkB ) // if ( !pNext->fMarkB ) { assert( pObj->fMarkB ); Vec_IntPush( vEvals, Abc_ObjId(pObj) ); break; } assert( Vec_IntSize(vEvals) > 0 ); // label nodes Abc_NtkForEachObjVec( vNodes, p, pObj, i ) pObj->fMarkB = 0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclFindBestCell( SC_Man * p, Abc_Obj_t * pObj, Vec_Int_t * vRecalcs, Vec_Int_t * vEvals, int Notches, int DelayGap, float * pGainBest ) { SC_Cell * pCellOld, * pCellNew; float dGain, dGainBest; int k, gateBest, NoChange = 0; // save old gate, timing, fanin load pCellOld = Abc_SclObjCell( pObj ); Abc_SclConeStore( p, vRecalcs ); Abc_SclEvalStore( p, vEvals ); Abc_SclLoadStore( p, pObj ); // try different gate sizes for this node gateBest = -1; dGainBest = -DelayGap; SC_RingForEachCell( pCellOld, pCellNew, k ) { if ( pCellNew == pCellOld ) continue; if ( k > Notches ) break; // set new cell Abc_SclObjSetCell( pObj, pCellNew ); Abc_SclUpdateLoad( p, pObj, pCellOld, pCellNew ); // recompute timing Abc_SclTimeCone( p, vRecalcs ); // set old cell Abc_SclObjSetCell( pObj, pCellOld ); Abc_SclLoadRestore( p, pObj ); // save best gain dGain = Abc_SclEvalPerform( p, vEvals ); if ( dGainBest < dGain ) { dGainBest = dGain; gateBest = pCellNew->Id; NoChange = 1; } else if ( NoChange ) NoChange++; if ( NoChange == 4 ) break; // printf( "%.2f ", dGain ); } // printf( "Best = %.2f ", dGainBest ); // printf( "\n" ); // put back old cell and timing Abc_SclObjSetCell( pObj, pCellOld ); Abc_SclConeRestore( p, vRecalcs ); *pGainBest = dGainBest; return gateBest; } /**Function************************************************************* Synopsis [Computes the set of gates to upsize.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclFindBypasses( SC_Man * p, Vec_Int_t * vPathNodes, int Ratio, int Notches, int iIter, int DelayGap, int fVeryVerbose ) { SC_Cell * pCellOld, * pCellNew; Vec_Ptr_t * vFanouts; Vec_Int_t * vRecalcs, * vEvals; Abc_Obj_t * pBuf, * pFanin, * pFanout, * pExtra; int i, j, iNode, gateBest, gateBest2, fanBest, Counter = 0; float dGainBest, dGainBest2; // compute savings due to bypassing buffers vFanouts = Vec_PtrAlloc( 100 ); vRecalcs = Vec_IntAlloc( 100 ); vEvals = Vec_IntAlloc( 100 ); Vec_QueClear( p->vNodeByGain ); Abc_NtkForEachObjVec( vPathNodes, p->pNtk, pBuf, i ) { assert( pBuf->fMarkB == 0 ); if ( Abc_ObjFaninNum(pBuf) != 1 ) continue; pFanin = Abc_ObjFanin0(pBuf); if ( !Abc_ObjIsNode(pFanin) ) continue; pExtra = NULL; if ( p->pNtk->vPhases == NULL ) { if ( Abc_SclIsInv(pBuf) ) { if ( !Abc_SclIsInv(pFanin) ) continue; pFanin = Abc_ObjFanin0(pFanin); if ( !Abc_ObjIsNode(pFanin) ) continue; pExtra = pBuf; // we make pBuf and pFanin are in the same phase and pFanin is a node } } // here we have pBuf and its fanin pFanin, which is a logic node // compute nodes to recalculate timing and nodes to evaluate afterwards Abc_SclFindNodesToUpdate( pFanin, &vRecalcs, &vEvals, pExtra ); assert( Vec_IntSize(vEvals) > 0 ); // consider fanouts of this node fanBest = -1; gateBest2 = -1; dGainBest2 = 0; Abc_NodeCollectFanouts( pBuf, vFanouts ); Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, j ) { // skip COs if ( Abc_ObjIsCo(pFanout) ) continue; // skip non-critical fanouts if ( !pFanout->fMarkA ) continue; // skip if fanin already has fanout as a fanout if ( Abc_NodeFindFanin(pFanout, pFanin) >= 0 ) continue; // skip if fanin already has fanout as a fanout if ( pExtra && Abc_NodeFindFanin(pFanout, pExtra) >= 0 ) continue; // prepare Abc_SclLoadStore3( p, pBuf ); Abc_SclUpdateLoadSplit( p, pBuf, pFanout ); Abc_ObjPatchFanin( pFanout, pBuf, pFanin ); // size the fanin gateBest = Abc_SclFindBestCell( p, pFanin, vRecalcs, vEvals, Notches, DelayGap, &dGainBest ); // unprepare Abc_SclLoadRestore3( p, pBuf ); Abc_ObjPatchFanin( pFanout, pFanin, pBuf ); if ( gateBest == -1 ) continue; // compare gain if ( dGainBest2 < dGainBest ) { dGainBest2 = dGainBest; gateBest2 = gateBest; fanBest = Abc_ObjId(pFanout); } } // remember savings if ( gateBest2 >= 0 ) { assert( dGainBest2 > 0.0 ); Vec_FltWriteEntry( p->vNode2Gain, Abc_ObjId(pBuf), dGainBest2 ); Vec_IntWriteEntry( p->vNode2Gate, Abc_ObjId(pBuf), gateBest2 ); Vec_QuePush( p->vNodeByGain, Abc_ObjId(pBuf) ); Vec_IntWriteEntry( p->vBestFans, Abc_ObjId(pBuf), fanBest ); } // if ( ++Counter == 17 ) // break; } Vec_PtrFree( vFanouts ); Vec_IntFree( vRecalcs ); Vec_IntFree( vEvals ); if ( Vec_QueSize(p->vNodeByGain) == 0 ) return 0; if ( fVeryVerbose ) printf( "\n" ); // accept changes for that are half above the average and do not overlap Counter = 0; dGainBest2 = -1; vFanouts = Vec_PtrAlloc( 100 ); while ( Vec_QueSize(p->vNodeByGain) ) { iNode = Vec_QuePop(p->vNodeByGain); pFanout = Abc_NtkObj( p->pNtk, Vec_IntEntry(p->vBestFans, iNode) ); pBuf = Abc_NtkObj( p->pNtk, iNode ); pFanin = Abc_ObjFanin0(pBuf); if ( pFanout->fMarkB || pBuf->fMarkB ) continue; if ( p->pNtk->vPhases == NULL ) { // update fanin if ( Abc_SclIsInv(pBuf) ) { if ( !Abc_SclIsInv(pFanin) ) { assert( 0 ); continue; } pFanin = Abc_ObjFanin0(pFanin); if ( !Abc_ObjIsNode(pFanin) ) { assert( 0 ); continue; } } } if ( pFanin->fMarkB ) continue; pFanout->fMarkB = 1; pBuf->fMarkB = 1; pFanin->fMarkB = 1; Vec_PtrPush( vFanouts, pFanout ); Vec_PtrPush( vFanouts, pBuf ); Vec_PtrPush( vFanouts, pFanin ); // remember gain if ( dGainBest2 == -1 ) dGainBest2 = Vec_FltEntry(p->vNode2Gain, iNode); // else if ( dGainBest2 > 2*Vec_FltEntry(p->vNode2Gain, iNode) ) // break; // redirect Abc_SclUpdateLoadSplit( p, pBuf, pFanout ); Abc_SclAddWireLoad( p, pBuf, 1 ); Abc_SclAddWireLoad( p, pFanin, 1 ); Abc_ObjPatchFanin( pFanout, pBuf, pFanin ); Abc_SclAddWireLoad( p, pBuf, 0 ); Abc_SclAddWireLoad( p, pFanin, 0 ); Abc_SclTimeIncUpdateLevel( pFanout ); // remember Vec_IntPush( p->vUpdates2, Abc_ObjId(pFanout) ); Vec_IntPush( p->vUpdates2, Abc_ObjId(pFanin) ); Vec_IntPush( p->vUpdates2, Abc_ObjId(pBuf) ); // update cell pCellOld = Abc_SclObjCell( pFanin ); pCellNew = SC_LibCell( p->pLib, Vec_IntEntry(p->vNode2Gate, iNode) ); p->SumArea += pCellNew->area - pCellOld->area; Abc_SclObjSetCell( pFanin, pCellNew ); Abc_SclUpdateLoad( p, pFanin, pCellOld, pCellNew ); // record the update Vec_IntPush( p->vUpdates, Abc_ObjId(pFanin) ); Vec_IntPush( p->vUpdates, pCellNew->Id ); Abc_SclTimeIncInsert( p, pFanout ); Abc_SclTimeIncInsert( p, pBuf ); Abc_SclTimeIncInsert( p, pFanin ); // remember when this node was upsized Vec_IntWriteEntry( p->vNodeIter, Abc_ObjId(pFanout), -1 ); Vec_IntWriteEntry( p->vNodeIter, Abc_ObjId(pBuf), -1 ); Vec_IntWriteEntry( p->vNodeIter, Abc_ObjId(pFanin), -1 ); // update polarity if ( p->pNtk->vPhases && Abc_SclIsInv(pBuf) ) Abc_NodeInvUpdateObjFanoutPolarity( pFanin, pFanout ); // report if ( fVeryVerbose ) { printf( "Node %6d Redir fanout %6d to fanin %6d. Gain = %7.1f ps. ", Abc_ObjId(pBuf), Abc_ObjId(pFanout), Abc_ObjId(pFanin), Vec_FltEntry(p->vNode2Gain, iNode) ); printf( "Gate %12s (%2d/%2d) -> %12s (%2d/%2d) \n", pCellOld->pName, pCellOld->Order, pCellOld->nGates, pCellNew->pName, pCellNew->Order, pCellNew->nGates ); } /* // check if the node became useless if ( Abc_ObjFanoutNum(pBuf) == 0 ) { pCellOld = Abc_SclObjCell( pBuf ); p->SumArea -= pCellOld->area; Abc_NtkDeleteObj_rec( pBuf, 1 ); printf( "Removed node %d.\n", iNode ); } */ Counter++; } Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, j ) pFanout->fMarkB = 0; Vec_PtrFree( vFanouts ); return Counter; } /**Function************************************************************* Synopsis [Check marked fanin/fanouts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclObjCheckMarkedFanFans( Abc_Obj_t * pObj ) { Abc_Obj_t * pNext; int i; if ( pObj->fMarkB ) return 1; Abc_ObjForEachFanin( pObj, pNext, i ) if ( pNext->fMarkB ) return 1; Abc_ObjForEachFanout( pObj, pNext, i ) if ( pNext->fMarkB ) return 1; return 0; } void Abc_SclObjMarkFanFans( Abc_Obj_t * pObj, Vec_Ptr_t * vNodes ) { // Abc_Obj_t * pNext; // int i; if ( pObj->fMarkB == 0 ) { Vec_PtrPush( vNodes, pObj ); pObj->fMarkB = 1; } /* Abc_ObjForEachFanin( pObj, pNext, i ) if ( pNext->fMarkB == 0 ) { Vec_PtrPush( vNodes, pNext ); pNext->fMarkB = 1; } Abc_ObjForEachFanout( pObj, pNext, i ) if ( pNext->fMarkB == 0 ) { Vec_PtrPush( vNodes, pNext ); pNext->fMarkB = 1; } */ } /**Function************************************************************* Synopsis [Computes the set of gates to upsize.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclFindUpsizes( SC_Man * p, Vec_Int_t * vPathNodes, int Ratio, int Notches, int iIter, int DelayGap, int fMoreConserf ) { SC_Cell * pCellOld, * pCellNew; Vec_Int_t * vRecalcs, * vEvals; Vec_Ptr_t * vFanouts; Abc_Obj_t * pObj; float dGainBest, dGainBest2; int i, gateBest, Limit, Counter, iIterLast; // compute savings due to upsizing each node vRecalcs = Vec_IntAlloc( 100 ); vEvals = Vec_IntAlloc( 100 ); Vec_QueClear( p->vNodeByGain ); Abc_NtkForEachObjVec( vPathNodes, p->pNtk, pObj, i ) { assert( pObj->fMarkB == 0 ); iIterLast = Vec_IntEntry(p->vNodeIter, Abc_ObjId(pObj)); if ( iIterLast >= 0 && iIterLast + 5 > iIter ) continue; // compute nodes to recalculate timing and nodes to evaluate afterwards Abc_SclFindNodesToUpdate( pObj, &vRecalcs, &vEvals, NULL ); assert( Vec_IntSize(vEvals) > 0 ); //printf( "%d -> %d\n", Vec_IntSize(vRecalcs), Vec_IntSize(vEvals) ); gateBest = Abc_SclFindBestCell( p, pObj, vRecalcs, vEvals, Notches, DelayGap, &dGainBest ); // remember savings if ( gateBest >= 0 ) { assert( dGainBest > 0.0 ); Vec_FltWriteEntry( p->vNode2Gain, Abc_ObjId(pObj), dGainBest ); Vec_IntWriteEntry( p->vNode2Gate, Abc_ObjId(pObj), gateBest ); Vec_QuePush( p->vNodeByGain, Abc_ObjId(pObj) ); } } Vec_IntFree( vRecalcs ); Vec_IntFree( vEvals ); if ( Vec_QueSize(p->vNodeByGain) == 0 ) return 0; /* Limit = Abc_MinInt( Vec_QueSize(p->vNodeByGain), Abc_MaxInt((int)(0.01 * Ratio * Vec_IntSize(vPathNodes)), 1) ); //printf( "\nSelecting %d out of %d\n", Limit, Vec_QueSize(p->vNodeByGain) ); for ( i = 0; i < Limit; i++ ) { // get the object pObj = Abc_NtkObj( p->pNtk, Vec_QuePop(p->vNodeByGain) ); assert( pObj->fMarkA ); // find old and new gates pCellOld = Abc_SclObjCell( pObj ); pCellNew = SC_LibCell( p->pLib, Vec_IntEntry(p->vNode2Gate, Abc_ObjId(pObj)) ); assert( pCellNew != NULL ); //printf( "%6d %20s -> %20s ", Abc_ObjId(pObj), pCellOld->pName, pCellNew->pName ); //printf( "gain is %f\n", Vec_FltEntry(p->vNode2Gain, Abc_ObjId(pObj)) ); // update gate Abc_SclUpdateLoad( p, pObj, pCellOld, pCellNew ); p->SumArea += pCellNew->area - pCellOld->area; Abc_SclObjSetCell( pObj, pCellNew ); // record the update Vec_IntPush( p->vUpdates, Abc_ObjId(pObj) ); Vec_IntPush( p->vUpdates, pCellNew->Id ); Abc_SclTimeIncInsert( p, pObj ); // remember when this node was upsized Vec_IntWriteEntry( p->vNodeIter, Abc_ObjId(pObj), iIter ); } return Limit; */ Limit = Abc_MinInt( Vec_QueSize(p->vNodeByGain), Abc_MaxInt((int)(0.01 * Ratio * Vec_IntSize(vPathNodes)), 1) ); dGainBest2 = -1; Counter = 0; vFanouts = Vec_PtrAlloc( 100 ); while ( Vec_QueSize(p->vNodeByGain) ) { int iNode = Vec_QuePop(p->vNodeByGain); Abc_Obj_t * pObj = Abc_NtkObj( p->pNtk, iNode ); assert( pObj->fMarkA ); if ( Abc_SclObjCheckMarkedFanFans( pObj ) ) continue; Abc_SclObjMarkFanFans( pObj, vFanouts ); // remember gain if ( dGainBest2 == -1 ) dGainBest2 = Vec_FltEntry(p->vNode2Gain, iNode); // else if ( dGainBest2 > 3*Vec_FltEntry(p->vNode2Gain, iNode) ) // break; // printf( "%.1f ", Vec_FltEntry(p->vNode2Gain, iNode) ); // find old and new gates pCellOld = Abc_SclObjCell( pObj ); pCellNew = SC_LibCell( p->pLib, Vec_IntEntry(p->vNode2Gate, Abc_ObjId(pObj)) ); assert( pCellNew != NULL ); //printf( "%6d %20s -> %20s ", Abc_ObjId(pObj), pCellOld->pName, pCellNew->pName ); //printf( "gain is %f\n", Vec_FltEntry(p->vNode2Gain, Abc_ObjId(pObj)) ); // if ( pCellOld->Order > 0 ) // printf( "%.2f %d -> %d(%d) ", Vec_FltEntry(p->vNode2Gain, iNode), pCellOld->Order, pCellNew->Order, pCellNew->nGates ); // update gate p->SumArea += pCellNew->area - pCellOld->area; Abc_SclObjSetCell( pObj, pCellNew ); Abc_SclUpdateLoad( p, pObj, pCellOld, pCellNew ); // record the update Vec_IntPush( p->vUpdates, Abc_ObjId(pObj) ); Vec_IntPush( p->vUpdates, pCellNew->Id ); Abc_SclTimeIncInsert( p, pObj ); // remember when this node was upsized Vec_IntWriteEntry( p->vNodeIter, Abc_ObjId(pObj), iIter ); Counter++; if ( Counter == Limit ) break; } // printf( "\n" ); Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pObj, i ) pObj->fMarkB = 0; Vec_PtrFree( vFanouts ); return Counter; } void Abc_SclApplyUpdateToBest( Vec_Int_t * vGatesBest, Vec_Int_t * vGates, Vec_Int_t * vUpdate ) { int i, ObjId, GateId, GateId2; Vec_IntForEachEntryDouble( vUpdate, ObjId, GateId, i ) Vec_IntWriteEntry( vGatesBest, ObjId, GateId ); Vec_IntClear( vUpdate ); Vec_IntForEachEntryTwo( vGatesBest, vGates, GateId, GateId2, i ) assert( GateId == GateId2 ); // Vec_IntClear( vGatesBest ); // Vec_IntAppend( vGatesBest, vGates ); } void Abc_SclUndoRecentChanges( Abc_Ntk_t * pNtk, Vec_Int_t * vTrans ) { int i; assert( Vec_IntSize(vTrans) % 3 == 0 ); for ( i = Vec_IntSize(vTrans)/3 - 1; i >= 0; i-- ) { Abc_Obj_t * pFanout = Abc_NtkObj( pNtk, Vec_IntEntry(vTrans, 3*i+0) ); Abc_Obj_t * pFanin = Abc_NtkObj( pNtk, Vec_IntEntry(vTrans, 3*i+1) ); Abc_Obj_t * pObj = Abc_NtkObj( pNtk, Vec_IntEntry(vTrans, 3*i+2) ); // we do not update load here because times will be recomputed Abc_ObjPatchFanin( pFanout, pFanin, pObj ); Abc_SclTimeIncUpdateLevel( pFanout ); // printf( "Node %6d Redir fanout %6d from fanin %6d. \n", // Abc_ObjId(pObj), Abc_ObjId(pFanout), Abc_ObjId(pFanin) ); // update polarity if ( pNtk->vPhases && Abc_SclIsInv(pObj) ) Abc_NodeInvUpdateObjFanoutPolarity( pObj, pFanout ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclUpsizePrintDiffs( SC_Man * p, SC_Lib * pLib, Abc_Ntk_t * pNtk ) { float fDiff = (float)0.001; int k; Abc_Obj_t * pObj; SC_Pair * pTimes = ABC_ALLOC( SC_Pair, p->nObjs ); SC_Pair * pSlews = ABC_ALLOC( SC_Pair, p->nObjs ); SC_Pair * pLoads = ABC_ALLOC( SC_Pair, p->nObjs ); memcpy( pTimes, p->pTimes, sizeof(SC_Pair) * p->nObjs ); memcpy( pSlews, p->pSlews, sizeof(SC_Pair) * p->nObjs ); memcpy( pLoads, p->pLoads, sizeof(SC_Pair) * p->nObjs ); Abc_SclTimeNtkRecompute( p, NULL, NULL, 0, 0 ); Abc_NtkForEachNode( pNtk, pObj, k ) { if ( Abc_AbsFloat(p->pLoads[k].rise - pLoads[k].rise) > fDiff ) printf( "%6d : load rise differs %12.6f %f %f\n", k, p->pLoads[k].rise-pLoads[k].rise, p->pLoads[k].rise, pLoads[k].rise ); if ( Abc_AbsFloat(p->pLoads[k].fall - pLoads[k].fall) > fDiff ) printf( "%6d : load fall differs %12.6f %f %f\n", k, p->pLoads[k].fall-pLoads[k].fall, p->pLoads[k].fall, pLoads[k].fall ); if ( Abc_AbsFloat(p->pSlews[k].rise - pSlews[k].rise) > fDiff ) printf( "%6d : slew rise differs %12.6f %f %f\n", k, p->pSlews[k].rise-pSlews[k].rise, p->pSlews[k].rise, pSlews[k].rise ); if ( Abc_AbsFloat(p->pSlews[k].fall - pSlews[k].fall) > fDiff ) printf( "%6d : slew fall differs %12.6f %f %f\n", k, p->pSlews[k].fall-pSlews[k].fall, p->pSlews[k].fall, pSlews[k].fall ); if ( Abc_AbsFloat(p->pTimes[k].rise - pTimes[k].rise) > fDiff ) printf( "%6d : time rise differs %12.6f %f %f\n", k, p->pTimes[k].rise-pTimes[k].rise, p->pTimes[k].rise, pTimes[k].rise ); if ( Abc_AbsFloat(p->pTimes[k].fall - pTimes[k].fall) > fDiff ) printf( "%6d : time fall differs %12.6f %f %f\n", k, p->pTimes[k].fall-pTimes[k].fall, p->pTimes[k].fall, pTimes[k].fall ); } /* if ( memcmp( pTimes, p->pTimes, sizeof(SC_Pair) * p->nObjs ) ) printf( "Times differ!\n" ); if ( memcmp( pSlews, p->pSlews, sizeof(SC_Pair) * p->nObjs ) ) printf( "Slews differ!\n" ); if ( memcmp( pLoads, p->pLoads, sizeof(SC_Pair) * p->nObjs ) ) printf( "Loads differ!\n" ); */ ABC_FREE( pTimes ); ABC_FREE( pSlews ); ABC_FREE( pLoads ); } /**Function************************************************************* Synopsis [Print cumulative statistics.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclUpsizePrint( SC_Man * p, int Iter, int win, int nPathPos, int nPathNodes, int nUpsizes, int nTFOs, int fVerbose ) { printf( "%4d ", Iter ); printf( "Win:%3d. ", win ); printf( "PO:%6d. ", nPathPos ); printf( "Path:%7d. ", nPathNodes ); printf( "Gate:%5d. ", nUpsizes ); printf( "TFO:%7d. ", nTFOs ); printf( "A: " ); printf( "%.2f ", p->SumArea ); printf( "(%+5.1f %%) ", 100.0 * (p->SumArea - p->SumArea0)/ p->SumArea0 ); printf( "D: " ); printf( "%.2f ps ", p->MaxDelay ); printf( "(%+5.1f %%) ", 100.0 * (p->MaxDelay - p->MaxDelay0)/ p->MaxDelay0 ); printf( "B: " ); printf( "%.2f ps ", p->BestDelay ); printf( "(%+5.1f %%)", 100.0 * (p->BestDelay - p->MaxDelay0)/ p->MaxDelay0 ); printf( "%8.2f sec ", 1.0*(Abc_Clock() - p->timeTotal)/(CLOCKS_PER_SEC) ); printf( "%c", fVerbose ? '\n' : '\r' ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclUpsizeRemoveDangling( SC_Man * p, Abc_Ntk_t * pNtk ) { SC_Cell * pCell; Abc_Obj_t * pObj; int i; Abc_NtkForEachNodeNotBarBuf( pNtk, pObj, i ) if ( Abc_ObjFanoutNum(pObj) == 0 ) { pCell = Abc_SclObjCell( pObj ); p->SumArea -= pCell->area; Abc_NtkDeleteObj_rec( pObj, 1 ); // printf( "Removed node %d.\n", i ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclUpsizePerformInt( SC_Lib * pLib, Abc_Ntk_t * pNtk, SC_SizePars * pPars ) { SC_Man * p; Vec_Int_t * vPathPos = NULL; // critical POs Vec_Int_t * vPathNodes = NULL; // critical nodes and PIs abctime clk, nRuntimeLimit = pPars->TimeOut ? pPars->TimeOut * CLOCKS_PER_SEC + Abc_Clock() : 0; int i = 0, win, nUpsizes = -1, nFramesNoChange = 0, nConeSize = 0; int nAllPos, nAllNodes, nAllTfos, nAllUpsizes; if ( pPars->fVerbose ) { printf( "Parameters: " ); printf( "Iters =%5d. ", pPars->nIters ); printf( "Time win =%3d %%. ", pPars->Window ); printf( "Update ratio =%3d %%. ", pPars->Ratio ); printf( "UseDept =%2d. ", pPars->fUseDept ); printf( "UseWL =%2d. ", pPars->fUseWireLoads ); printf( "Target =%5d ps. ", pPars->DelayUser ); printf( "DelayGap =%3d ps. ", pPars->DelayGap ); printf( "Timeout =%4d sec", pPars->TimeOut ); printf( "\n" ); } // increase window for larger networks if ( pPars->Window == 1 ) pPars->Window += (Abc_NtkNodeNum(pNtk) > 40000); // prepare the manager; collect init stats p = Abc_SclManStart( pLib, pNtk, pPars->fUseWireLoads, pPars->fUseDept, 0, pPars->BuffTreeEst ); p->timeTotal = Abc_Clock(); assert( p->vGatesBest == NULL ); p->vGatesBest = Vec_IntDup( p->pNtk->vGates ); p->BestDelay = p->MaxDelay0; // perform upsizing nAllPos = nAllNodes = nAllTfos = nAllUpsizes = 0; if ( p->BestDelay <= pPars->DelayUser ) printf( "Current delay (%.2f ps) does not exceed the target delay (%.2f ps). Upsizing is not performed.\n", p->BestDelay, (float)pPars->DelayUser ); else for ( i = 0; i < pPars->nIters; i++ ) { for ( win = pPars->Window + ((i % 7) == 6); win <= 100; win *= 2 ) { // detect critical path clk = Abc_Clock(); vPathPos = Abc_SclFindCriticalCoWindow( p, win ); vPathNodes = Abc_SclFindCriticalNodeWindow( p, vPathPos, win, pPars->fUseDept ); p->timeCone += Abc_Clock() - clk; // selectively upsize the nodes clk = Abc_Clock(); if ( pPars->BypassFreq && i && (i % pPars->BypassFreq) == 0 ) nUpsizes = Abc_SclFindBypasses( p, vPathNodes, pPars->Ratio, pPars->Notches, i, pPars->DelayGap, pPars->fVeryVerbose ); else nUpsizes = Abc_SclFindUpsizes( p, vPathNodes, pPars->Ratio, pPars->Notches, i, pPars->DelayGap, (pPars->BypassFreq > 0) ); p->timeSize += Abc_Clock() - clk; // unmark critical path clk = Abc_Clock(); Abc_SclUnmarkCriticalNodeWindow( p, vPathNodes ); Abc_SclUnmarkCriticalNodeWindow( p, vPathPos ); p->timeCone += Abc_Clock() - clk; if ( nUpsizes > 0 ) break; Vec_IntFree( vPathPos ); Vec_IntFree( vPathNodes ); } if ( nUpsizes == 0 ) break; // update timing information clk = Abc_Clock(); if ( pPars->fUseDept ) { if ( Vec_IntSize(p->vChanged) && !(pPars->BypassFreq && i && (i % pPars->BypassFreq) == 0) ) nConeSize = Abc_SclTimeIncUpdate( p ); else Abc_SclTimeNtkRecompute( p, NULL, NULL, pPars->fUseDept, 0 ); } else { Vec_Int_t * vTFO = Abc_SclFindTFO( p->pNtk, vPathNodes ); Abc_SclTimeCone( p, vTFO ); nConeSize = Vec_IntSize( vTFO ); Vec_IntFree( vTFO ); } p->timeTime += Abc_Clock() - clk; // Abc_SclUpsizePrintDiffs( p, pLib, pNtk ); // save the best network p->MaxDelay = Abc_SclReadMaxDelay( p ); if ( p->BestDelay > p->MaxDelay ) { p->BestDelay = p->MaxDelay; Abc_SclApplyUpdateToBest( p->vGatesBest, p->pNtk->vGates, p->vUpdates ); Vec_IntClear( p->vUpdates2 ); nFramesNoChange = 0; } else nFramesNoChange++; // report and cleanup Abc_SclUpsizePrint( p, i, win, Vec_IntSize(vPathPos), Vec_IntSize(vPathNodes), nUpsizes, nConeSize, pPars->fVeryVerbose || (pPars->fVerbose && nFramesNoChange == 0) ); //|| (i == nIters-1) ); nAllPos += Vec_IntSize(vPathPos); nAllNodes += Vec_IntSize(vPathNodes); nAllTfos += nConeSize; nAllUpsizes += nUpsizes; Vec_IntFree( vPathPos ); Vec_IntFree( vPathNodes ); // check timeout if ( nRuntimeLimit && Abc_Clock() > nRuntimeLimit ) break; // check no change if ( nFramesNoChange > pPars->nIterNoChange ) break; // check best delay if ( p->BestDelay <= pPars->DelayUser ) break; } // update for best gates and recompute timing ABC_SWAP( Vec_Int_t *, p->vGatesBest, p->pNtk->vGates ); if ( pPars->BypassFreq != 0 ) Abc_SclUndoRecentChanges( p->pNtk, p->vUpdates2 ); if ( pPars->BypassFreq != 0 ) Abc_SclUpsizeRemoveDangling( p, pNtk ); Abc_SclTimeNtkRecompute( p, &p->SumArea, &p->MaxDelay, 0, 0 ); if ( pPars->fVerbose ) Abc_SclUpsizePrint( p, i, pPars->Window, nAllPos/(i?i:1), nAllNodes/(i?i:1), nAllUpsizes/(i?i:1), nAllTfos/(i?i:1), 1 ); else printf( " \r" ); // report runtime p->timeTotal = Abc_Clock() - p->timeTotal; if ( pPars->fVerbose ) { p->timeOther = p->timeTotal - p->timeCone - p->timeSize - p->timeTime; ABC_PRTP( "Runtime: Critical path", p->timeCone, p->timeTotal ); ABC_PRTP( "Runtime: Sizing eval ", p->timeSize, p->timeTotal ); ABC_PRTP( "Runtime: Timing update", p->timeTime, p->timeTotal ); ABC_PRTP( "Runtime: Other ", p->timeOther, p->timeTotal ); ABC_PRTP( "Runtime: TOTAL ", p->timeTotal, p->timeTotal ); } if ( pPars->fDumpStats ) Abc_SclDumpStats( p, "stats2.txt", p->timeTotal ); if ( nRuntimeLimit && Abc_Clock() > nRuntimeLimit ) printf( "Gate sizing timed out at %d seconds.\n", pPars->TimeOut ); // save the result and quit Abc_SclSclGates2MioGates( pLib, pNtk ); // updates gate pointers Abc_SclManFree( p ); // Abc_NtkCleanMarkAB( pNtk ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclUpsizePerform( SC_Lib * pLib, Abc_Ntk_t * pNtk, SC_SizePars * pPars ) { Abc_Ntk_t * pNtkNew = pNtk; if ( pNtk->nBarBufs2 > 0 ) pNtkNew = Abc_NtkDupDfsNoBarBufs( pNtk ); Abc_SclUpsizePerformInt( pLib, pNtkNew, pPars ); if ( pNtk->nBarBufs2 > 0 ) Abc_SclTransferGates( pNtk, pNtkNew ); if ( pNtk->nBarBufs2 > 0 ) Abc_NtkDelete( pNtkNew ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END