/**CFile**************************************************************** FileName [kitTruth.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Computation kit.] Synopsis [Procedures involving truth tables.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - Dec 6, 2006.] Revision [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] ***********************************************************************/ #include "kit.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Swaps two adjacent variables in the truth table.] Description [Swaps var number Start and var number Start+1 (0-based numbers). The input truth table is pIn. The output truth table is pOut.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) { static unsigned PMasks[4][3] = { { 0x99999999, 0x22222222, 0x44444444 }, { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 }, { 0xF00FF00F, 0x00F000F0, 0x0F000F00 }, { 0xFF0000FF, 0x0000FF00, 0x00FF0000 } }; int nWords = Kit_TruthWordNum( nVars ); int i, k, Step, Shift; assert( iVar < nVars - 1 ); if ( iVar < 4 ) { Shift = (1 << iVar); for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); } else if ( iVar > 4 ) { Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 4*Step ) { for ( i = 0; i < Step; i++ ) pOut[i] = pIn[i]; for ( i = 0; i < Step; i++ ) pOut[Step+i] = pIn[2*Step+i]; for ( i = 0; i < Step; i++ ) pOut[2*Step+i] = pIn[Step+i]; for ( i = 0; i < Step; i++ ) pOut[3*Step+i] = pIn[3*Step+i]; pIn += 4*Step; pOut += 4*Step; } } else // if ( iVar == 4 ) { for ( i = 0; i < nWords; i += 2 ) { pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); } } } /**Function************************************************************* Synopsis [Swaps two adjacent variables in the truth table.] Description [Swaps var number Start and var number Start+1 (0-based numbers). The input truth table is pIn. The output truth table is pOut.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start ) { int nWords = (nVars <= 5)? 1 : (1 << (nVars-5)); int i, k, Step; assert( Start < nVars - 1 ); switch ( Start ) { case 0: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1); return; case 1: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2); return; case 2: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4); return; case 3: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8); return; case 4: for ( i = 0; i < nWords; i += 2 ) { pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); } return; default: Step = (1 << (Start - 5)); for ( k = 0; k < nWords; k += 4*Step ) { for ( i = 0; i < Step; i++ ) pOut[i] = pIn[i]; for ( i = 0; i < Step; i++ ) pOut[Step+i] = pIn[2*Step+i]; for ( i = 0; i < Step; i++ ) pOut[2*Step+i] = pIn[Step+i]; for ( i = 0; i < Step; i++ ) pOut[3*Step+i] = pIn[3*Step+i]; pIn += 4*Step; pOut += 4*Step; } return; } } /**Function************************************************************* Synopsis [Expands the truth table according to the phase.] Description [The input and output truth tables are in pIn/pOut. The current number of variables is nVars. The total number of variables in nVarsAll. The last argument (Phase) contains shows where the variables should go.] SideEffects [The input truth table is modified.] SeeAlso [] ***********************************************************************/ void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) { unsigned * pTemp; int i, k, Var = nVars - 1, Counter = 0; for ( i = nVarsAll - 1; i >= 0; i-- ) if ( Phase & (1 << i) ) { for ( k = Var; k < i; k++ ) { Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); pTemp = pIn; pIn = pOut; pOut = pTemp; Counter++; } Var--; } assert( Var == -1 ); // swap if it was moved an even number of times if ( fReturnIn ^ !(Counter & 1) ) Kit_TruthCopy( pOut, pIn, nVarsAll ); } /**Function************************************************************* Synopsis [Shrinks the truth table according to the phase.] Description [The input and output truth tables are in pIn/pOut. The current number of variables is nVars. The total number of variables in nVarsAll. The last argument (Phase) shows what variables should remain.] SideEffects [The input truth table is modified.] SeeAlso [] ***********************************************************************/ void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) { unsigned * pTemp; int i, k, Var = 0, Counter = 0; for ( i = 0; i < nVarsAll; i++ ) if ( Phase & (1 << i) ) { for ( k = i-1; k >= Var; k-- ) { Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); pTemp = pIn; pIn = pOut; pOut = pTemp; Counter++; } Var++; } assert( Var == nVars ); // swap if it was moved an even number of times if ( fReturnIn ^ !(Counter & 1) ) Kit_TruthCopy( pOut, pIn, nVarsAll ); } /**Function************************************************************* Synopsis [Implement give permutation.] Description [The input and output truth tables are in pIn/pOut. The number of variables is nVars. Permutation is in pPerm.] SideEffects [The input truth table is modified.] SeeAlso [] ***********************************************************************/ void Kit_TruthPermute( unsigned * pOut, unsigned * pIn, int nVars, char * pPerm, int fReturnIn ) { unsigned * pTemp; int i, Temp, fChange, Counter = 0; do { fChange = 0; for ( i = 0; i < nVars-1; i++ ) { assert( pPerm[i] != pPerm[i+1] ); if ( pPerm[i] <= pPerm[i+1] ) continue; Counter++; fChange = 1; Temp = pPerm[i]; pPerm[i] = pPerm[i+1]; pPerm[i+1] = Temp; Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); pTemp = pIn; pIn = pOut; pOut = pTemp; } } while ( fChange ); if ( fReturnIn ^ !(Counter & 1) ) Kit_TruthCopy( pOut, pIn, nVars ); } /**Function************************************************************* Synopsis [Returns 1 if TT depends on the given variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) ) return 1; return 0; case 1: for ( i = 0; i < nWords; i++ ) if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) ) return 1; return 0; case 2: for ( i = 0; i < nWords; i++ ) if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) ) return 1; return 0; case 3: for ( i = 0; i < nWords; i++ ) if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) ) return 1; return 0; case 4: for ( i = 0; i < nWords; i++ ) if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) ) return 1; return 0; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) if ( pTruth[i] != pTruth[Step+i] ) return 1; pTruth += 2*Step; } return 0; } } /**Function************************************************************* Synopsis [Returns the number of support vars.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthSupportSize( unsigned * pTruth, int nVars ) { int i, Counter = 0; for ( i = 0; i < nVars; i++ ) Counter += Kit_TruthVarInSupport( pTruth, nVars, i ); return Counter; } /**Function************************************************************* Synopsis [Returns support of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Kit_TruthSupport( unsigned * pTruth, int nVars ) { int i, Support = 0; for ( i = 0; i < nVars; i++ ) if ( Kit_TruthVarInSupport( pTruth, nVars, i ) ) Support |= (1 << i); return Support; } /**Function************************************************************* Synopsis [Computes negative cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1); return; case 1: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2); return; case 2: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4); return; case 3: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8); return; case 4: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) pTruth[Step+i] = pTruth[i]; pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Computes negative cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthCofactor0Count( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step, Counter = 0; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes(pTruth[i] & 0x55555555); return Counter; case 1: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes(pTruth[i] & 0x33333333); return Counter; case 2: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes(pTruth[i] & 0x0F0F0F0F); return Counter; case 3: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes(pTruth[i] & 0x00FF00FF); return Counter; case 4: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes(pTruth[i] & 0x0000FFFF); return Counter; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) Counter += Kit_WordCountOnes(pTruth[i]); pTruth += 2*Step; } return Counter; } } /**Function************************************************************* Synopsis [Computes positive cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1); return; case 1: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2); return; case 2: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4); return; case 3: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8); return; case 4: for ( i = 0; i < nWords; i++ ) pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) pTruth[i] = pTruth[Step+i]; pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Computes positive cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x55555555) | ((pIn[i] & 0x55555555) << 1); return; case 1: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x33333333) | ((pIn[i] & 0x33333333) << 2); return; case 2: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x0F0F0F0F) | ((pIn[i] & 0x0F0F0F0F) << 4); return; case 3: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x00FF00FF) | ((pIn[i] & 0x00FF00FF) << 8); return; case 4: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i] & 0x0000FFFF) << 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) pOut[i] = pOut[Step+i] = pIn[i]; pIn += 2*Step; pOut += 2*Step; } return; } } /**Function************************************************************* Synopsis [Computes positive cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xAAAAAAAA) | ((pIn[i] & 0xAAAAAAAA) >> 1); return; case 1: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xCCCCCCCC) | ((pIn[i] & 0xCCCCCCCC) >> 2); return; case 2: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xF0F0F0F0) | ((pIn[i] & 0xF0F0F0F0) >> 4); return; case 3: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xFF00FF00) | ((pIn[i] & 0xFF00FF00) >> 8); return; case 4: for ( i = 0; i < nWords; i++ ) pOut[i] = (pIn[i] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) pOut[i] = pOut[Step+i] = pIn[Step+i]; pIn += 2*Step; pOut += 2*Step; } return; } } /**Function************************************************************* Synopsis [Computes negative cofactor of the function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthVarIsVacuous( unsigned * pOnset, unsigned * pOffset, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) if ( ((pOnset[i] & (pOffset[i] >> 1)) | (pOffset[i] & (pOnset[i] >> 1))) & 0x55555555 ) return 0; return 1; case 1: for ( i = 0; i < nWords; i++ ) if ( ((pOnset[i] & (pOffset[i] >> 2)) | (pOffset[i] & (pOnset[i] >> 2))) & 0x33333333 ) return 0; return 1; case 2: for ( i = 0; i < nWords; i++ ) if ( ((pOnset[i] & (pOffset[i] >> 4)) | (pOffset[i] & (pOnset[i] >> 4))) & 0x0F0F0F0F ) return 0; return 1; case 3: for ( i = 0; i < nWords; i++ ) if ( ((pOnset[i] & (pOffset[i] >> 8)) | (pOffset[i] & (pOnset[i] >> 8))) & 0x00FF00FF ) return 0; return 1; case 4: for ( i = 0; i < nWords; i++ ) if ( ((pOnset[i] & (pOffset[i] >> 16)) | (pOffset[i] & (pOnset[i] >> 16))) & 0x0000FFFF ) return 0; return 1; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) if ( (pOnset[i] & pOffset[Step+i]) | (pOffset[i] & pOnset[Step+i]) ) return 0; pOnset += 2*Step; pOffset += 2*Step; } return 1; } } /**Function************************************************************* Synopsis [Existentially quantifies the variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pTruth[i] |= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); return; case 1: for ( i = 0; i < nWords; i++ ) pTruth[i] |= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); return; case 2: for ( i = 0; i < nWords; i++ ) pTruth[i] |= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); return; case 3: for ( i = 0; i < nWords; i++ ) pTruth[i] |= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); return; case 4: for ( i = 0; i < nWords; i++ ) pTruth[i] |= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pTruth[i] |= pTruth[Step+i]; pTruth[Step+i] = pTruth[i]; } pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Existentially quantifies the variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] | ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); return; case 1: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] | ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); return; case 2: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] | ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); return; case 3: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] | ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); return; case 4: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] | ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pRes[i] = pTruth[i] | pTruth[Step+i]; pRes[Step+i] = pRes[i]; } pRes += 2*Step; pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Existantially quantifies the set of variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) { int v; Kit_TruthCopy( pRes, pTruth, nVars ); for ( v = 0; v < nVars; v++ ) if ( uMask & (1 << v) ) Kit_TruthExist( pRes, nVars, v ); } /**Function************************************************************* Synopsis [Unversally quantifies the variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pTruth[i] &= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); return; case 1: for ( i = 0; i < nWords; i++ ) pTruth[i] &= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); return; case 2: for ( i = 0; i < nWords; i++ ) pTruth[i] &= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); return; case 3: for ( i = 0; i < nWords; i++ ) pTruth[i] &= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); return; case 4: for ( i = 0; i < nWords; i++ ) pTruth[i] &= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pTruth[i] &= pTruth[Step+i]; pTruth[Step+i] = pTruth[i]; } pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Universally quantifies the variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] & (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); return; case 1: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] & (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); return; case 2: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] & (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); return; case 3: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] & (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); return; case 4: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] & (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pRes[i] = pTruth[i] & pTruth[Step+i]; pRes[Step+i] = pRes[i]; } pRes += 2*Step; pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Universally quantifies the variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); return; case 1: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); return; case 2: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); return; case 3: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); return; case 4: for ( i = 0; i < nWords; i++ ) pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pRes[i] = pTruth[i] ^ pTruth[Step+i]; pRes[Step+i] = pRes[i]; } pRes += 2*Step; pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Returns the number of minterms in the Boolean difference.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthBooleanDiffCount( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step, Counter = 0; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 1)) & 0x55555555 ); return Counter; case 1: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 2)) & 0x33333333 ); return Counter; case 2: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 4)) & 0x0F0F0F0F ); return Counter; case 3: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >> 8)) & 0x00FF00FF ); return Counter; case 4: for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( (pTruth[i] ^ (pTruth[i] >>16)) & 0x0000FFFF ); return Counter; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) Counter += Kit_WordCountOnes( pTruth[i] ^ pTruth[Step+i] ); pTruth += 2*Step; } return Counter; } } /**Function************************************************************* Synopsis [Returns the number of minterms in the Boolean difference.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthXorCount( unsigned * pTruth0, unsigned * pTruth1, int nVars ) { int nWords = Kit_TruthWordNum( nVars ); int i, Counter = 0; for ( i = 0; i < nWords; i++ ) Counter += Kit_WordCountOnes( pTruth0[i] ^ pTruth1[i] ); return Counter; } /**Function************************************************************* Synopsis [Universally quantifies the set of variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) { int v; Kit_TruthCopy( pRes, pTruth, nVars ); for ( v = 0; v < nVars; v++ ) if ( uMask & (1 << v) ) Kit_TruthForall( pRes, nVars, v ); } /**Function************************************************************* Synopsis [Multiplexes two functions with the given variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); return; case 1: for ( i = 0; i < nWords; i++ ) pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); return; case 2: for ( i = 0; i < nWords; i++ ) pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); return; case 3: for ( i = 0; i < nWords; i++ ) pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); return; case 4: for ( i = 0; i < nWords; i++ ) pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pOut[i] = pCof0[i]; pOut[Step+i] = pCof1[Step+i]; } pOut += 2*Step; pCof0 += 2*Step; pCof1 += 2*Step; } return; } } /**Function************************************************************* Synopsis [Multiplexes two functions with the given variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; if ( fCompl0 == 0 ) { Kit_TruthMuxVar( pOut, pCof0, pCof1, nVars, iVar ); return; } assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pOut[i] = (~pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); return; case 1: for ( i = 0; i < nWords; i++ ) pOut[i] = (~pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); return; case 2: for ( i = 0; i < nWords; i++ ) pOut[i] = (~pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); return; case 3: for ( i = 0; i < nWords; i++ ) pOut[i] = (~pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); return; case 4: for ( i = 0; i < nWords; i++ ) pOut[i] = (~pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pOut[i] = ~pCof0[i]; pOut[Step+i] = pCof1[Step+i]; } pOut += 2*Step; pCof0 += 2*Step; pCof1 += 2*Step; } return; } } /**Function************************************************************* Synopsis [Checks symmetry of two variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 ) { static unsigned uTemp0[32], uTemp1[32]; if ( pCof0 == NULL ) { assert( nVars <= 10 ); pCof0 = uTemp0; } if ( pCof1 == NULL ) { assert( nVars <= 10 ); pCof1 = uTemp1; } // compute Cof01 Kit_TruthCopy( pCof0, pTruth, nVars ); Kit_TruthCofactor0( pCof0, nVars, iVar0 ); Kit_TruthCofactor1( pCof0, nVars, iVar1 ); // compute Cof10 Kit_TruthCopy( pCof1, pTruth, nVars ); Kit_TruthCofactor1( pCof1, nVars, iVar0 ); Kit_TruthCofactor0( pCof1, nVars, iVar1 ); // compare return Kit_TruthIsEqual( pCof0, pCof1, nVars ); } /**Function************************************************************* Synopsis [Checks antisymmetry of two variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1, unsigned * pCof0, unsigned * pCof1 ) { static unsigned uTemp0[32], uTemp1[32]; if ( pCof0 == NULL ) { assert( nVars <= 10 ); pCof0 = uTemp0; } if ( pCof1 == NULL ) { assert( nVars <= 10 ); pCof1 = uTemp1; } // compute Cof00 Kit_TruthCopy( pCof0, pTruth, nVars ); Kit_TruthCofactor0( pCof0, nVars, iVar0 ); Kit_TruthCofactor0( pCof0, nVars, iVar1 ); // compute Cof11 Kit_TruthCopy( pCof1, pTruth, nVars ); Kit_TruthCofactor1( pCof1, nVars, iVar0 ); Kit_TruthCofactor1( pCof1, nVars, iVar1 ); // compare return Kit_TruthIsEqual( pCof0, pCof1, nVars ); } /**Function************************************************************* Synopsis [Changes phase of the function w.r.t. one variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Step; unsigned Temp; assert( iVar < nVars ); switch ( iVar ) { case 0: for ( i = 0; i < nWords; i++ ) pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1); return; case 1: for ( i = 0; i < nWords; i++ ) pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2); return; case 2: for ( i = 0; i < nWords; i++ ) pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4); return; case 3: for ( i = 0; i < nWords; i++ ) pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8); return; case 4: for ( i = 0; i < nWords; i++ ) pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16); return; default: Step = (1 << (iVar - 5)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { Temp = pTruth[i]; pTruth[i] = pTruth[Step+i]; pTruth[Step+i] = Temp; } pTruth += 2*Step; } return; } } /**Function************************************************************* Synopsis [Computes minimum overlap in supports of cofactors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ) { static unsigned uCofactor[16]; int i, ValueCur, ValueMin, VarMin; unsigned uSupp0, uSupp1; int nVars0, nVars1; assert( nVars <= 9 ); ValueMin = 32; VarMin = -1; for ( i = 0; i < nVars; i++ ) { // get negative cofactor Kit_TruthCopy( uCofactor, pTruth, nVars ); Kit_TruthCofactor0( uCofactor, nVars, i ); uSupp0 = Kit_TruthSupport( uCofactor, nVars ); nVars0 = Kit_WordCountOnes( uSupp0 ); //Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" ); // get positive cofactor Kit_TruthCopy( uCofactor, pTruth, nVars ); Kit_TruthCofactor1( uCofactor, nVars, i ); uSupp1 = Kit_TruthSupport( uCofactor, nVars ); nVars1 = Kit_WordCountOnes( uSupp1 ); //Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" ); // get the number of common vars ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 ); if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 ) { ValueMin = ValueCur; VarMin = i; } if ( ValueMin == 0 ) break; } if ( pVarMin ) *pVarMin = VarMin; return ValueMin; } /**Function************************************************************* Synopsis [Find the best cofactoring variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 ) { int i, iBestVar, nSuppSizeCur0, nSuppSizeCur1, nSuppSizeCur, nSuppSizeMin; if ( Kit_TruthIsConst0(pTruth, nVars) || Kit_TruthIsConst1(pTruth, nVars) ) return -1; // iterate through variables iBestVar = -1; nSuppSizeMin = KIT_INFINITY; for ( i = 0; i < nVars; i++ ) { // cofactor the functiona and get support sizes Kit_TruthCofactor0New( pCof0, pTruth, nVars, i ); Kit_TruthCofactor1New( pCof1, pTruth, nVars, i ); nSuppSizeCur0 = Kit_TruthSupportSize( pCof0, nVars ); nSuppSizeCur1 = Kit_TruthSupportSize( pCof1, nVars ); nSuppSizeCur = nSuppSizeCur0 + nSuppSizeCur1; // compare this variable with other variables if ( nSuppSizeMin > nSuppSizeCur ) { nSuppSizeMin = nSuppSizeCur; iBestVar = i; } } assert( iBestVar != -1 ); // cofactor w.r.t. this variable Kit_TruthCofactor0New( pCof0, pTruth, nVars, iBestVar ); Kit_TruthCofactor1New( pCof1, pTruth, nVars, iBestVar ); return iBestVar; } /**Function************************************************************* Synopsis [Counts the number of 1's in each cofactor.] Description [The resulting numbers are stored in the array of ints, whose length is 2*nVars. The number of 1's is counted in a different space than the original function. For example, if the function depends on k variables, the cofactors are assumed to depend on k-1 variables.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, int * pStore ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Counter; memset( pStore, 0, sizeof(int) * 2 * nVars ); if ( nVars <= 5 ) { if ( nVars > 0 ) { pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA ); } if ( nVars > 1 ) { pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC ); } if ( nVars > 2 ) { pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 ); } if ( nVars > 3 ) { pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 ); } if ( nVars > 4 ) { pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 ); } return; } // nVars >= 6 // count 1's for all other variables for ( k = 0; k < nWords; k++ ) { Counter = Kit_WordCountOnes( pTruth[k] ); for ( i = 5; i < nVars; i++ ) if ( k & (1 << (i-5)) ) pStore[2*i+1] += Counter; else pStore[2*i+0] += Counter; } // count 1's for the first five variables for ( k = 0; k < nWords/2; k++ ) { pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) ); pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >> 1) ); pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) ); pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >> 2) ); pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) ); pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >> 4) ); pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) ); pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >> 8) ); pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) ); pTruth += 2; } } /**Function************************************************************* Synopsis [Counts the number of 1's in each negative cofactor.] Description [The resulting numbers are stored in the array of ints, whose length is nVars. The number of 1's is counted in a different space than the original function. For example, if the function depends on k variables, the cofactors are assumed to depend on k-1 variables.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCountOnesInCofs0( unsigned * pTruth, int nVars, int * pStore ) { int nWords = Kit_TruthWordNum( nVars ); int i, k, Counter; memset( pStore, 0, sizeof(int) * nVars ); if ( nVars <= 5 ) { if ( nVars > 0 ) pStore[0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); if ( nVars > 1 ) pStore[1] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); if ( nVars > 2 ) pStore[2] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); if ( nVars > 3 ) pStore[3] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); if ( nVars > 4 ) pStore[4] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); return; } // nVars >= 6 // count 1's for all other variables for ( k = 0; k < nWords; k++ ) { Counter = Kit_WordCountOnes( pTruth[k] ); for ( i = 5; i < nVars; i++ ) if ( (k & (1 << (i-5))) == 0 ) pStore[i] += Counter; } // count 1's for the first five variables for ( k = 0; k < nWords/2; k++ ) { pStore[0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) ); pStore[1] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) ); pStore[2] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) ); pStore[3] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) ); pStore[4] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); pTruth += 2; } } /**Function************************************************************* Synopsis [Counts the number of 1's in each cofactor.] Description [Verifies the above procedure.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, int * pStore, unsigned * pAux ) { int i; for ( i = 0; i < nVars; i++ ) { Kit_TruthCofactor0New( pAux, pTruth, nVars, i ); pStore[2*i+0] = Kit_TruthCountOnes( pAux, nVars ) / 2; Kit_TruthCofactor1New( pAux, pTruth, nVars, i ); pStore[2*i+1] = Kit_TruthCountOnes( pAux, nVars ) / 2; } } /**Function************************************************************* Synopsis [Canonicize the truth table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Kit_TruthHash( unsigned * pIn, int nWords ) { // The 1,024 smallest prime numbers used to compute the hash value // http://www.math.utah.edu/~alfeld/math/primelist.html static int HashPrimes[1024] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161 }; int i; unsigned uHashKey; assert( nWords <= 1024 ); uHashKey = 0; for ( i = 0; i < nWords; i++ ) uHashKey ^= HashPrimes[i] * pIn[i]; return uHashKey; } /**Function************************************************************* Synopsis [Canonicize the truth table.] Description [Returns the phase. ] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm ) { int pStore[32]; unsigned * pIn = pInOut, * pOut = pAux, * pTemp; int nWords = Kit_TruthWordNum( nVars ); int i, Temp, fChange, Counter, nOnes;//, k, j, w, Limit; unsigned uCanonPhase; // canonicize output uCanonPhase = 0; for ( i = 0; i < nVars; i++ ) pCanonPerm[i] = i; nOnes = Kit_TruthCountOnes(pIn, nVars); //if(pIn[0] & 1) if ( (nOnes > nWords * 16) )//|| ((nOnes == nWords * 16) && (pIn[0] & 1)) ) { uCanonPhase |= (1 << nVars); Kit_TruthNot( pIn, pIn, nVars ); } // collect the minterm counts Kit_TruthCountOnesInCofs( pIn, nVars, pStore ); /* Kit_TruthCountOnesInCofsSlow( pIn, nVars, pStore2, pAux ); for ( i = 0; i < 2*nVars; i++ ) { assert( pStore[i] == pStore2[i] ); } */ // canonicize phase for ( i = 0; i < nVars; i++ ) { if ( pStore[2*i+0] >= pStore[2*i+1] ) continue; uCanonPhase |= (1 << i); Temp = pStore[2*i+0]; pStore[2*i+0] = pStore[2*i+1]; pStore[2*i+1] = Temp; Kit_TruthChangePhase( pIn, nVars, i ); } // Kit_PrintHexadecimal( stdout, pIn, nVars ); // printf( "\n" ); // permute Counter = 0; do { fChange = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[2*i] >= pStore[2*(i+1)] ) continue; Counter++; fChange = 1; Temp = pCanonPerm[i]; pCanonPerm[i] = pCanonPerm[i+1]; pCanonPerm[i+1] = Temp; Temp = pStore[2*i]; pStore[2*i] = pStore[2*(i+1)]; pStore[2*(i+1)] = Temp; Temp = pStore[2*i+1]; pStore[2*i+1] = pStore[2*(i+1)+1]; pStore[2*(i+1)+1] = Temp; // if the polarity of variables is different, swap them if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) ) { uCanonPhase ^= (1 << i); uCanonPhase ^= (1 << (i+1)); } Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); pTemp = pIn; pIn = pOut; pOut = pTemp; } } while ( fChange ); /* Extra_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " ); for ( i = 0; i < nVars; i++ ) printf( "%d=%d/%d ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] ); printf( " C = %d\n", Counter ); Extra_PrintHexadecimal( stdout, pIn, nVars ); printf( "\n" ); */ /* // process symmetric variable groups uSymms = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric continue; if ( pStore[2*i] != pStore[2*i+1] ) continue; if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) ) continue; if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) ) Kit_TruthChangePhase( pIn, nVars, i+1 ); } */ /* // process symmetric variable groups uSymms = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric continue; // i and i+1 can be symmetric // find the end of this group for ( k = i+1; k < nVars; k++ ) if ( pStore[2*i] != pStore[2*k] ) break; Limit = k; assert( i < Limit-1 ); // go through the variables in this group for ( j = i + 1; j < Limit; j++ ) { // check symmetry if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) ) { uSymms |= (1 << j); continue; } // they are phase-unknown if ( pStore[2*i] == pStore[2*i+1] ) { if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) ) { Kit_TruthChangePhase( pIn, nVars, j ); uCanonPhase ^= (1 << j); uSymms |= (1 << j); continue; } } // they are not symmetric - move j as far as it goes in the group for ( k = j; k < Limit-1; k++ ) { Counter++; Temp = pCanonPerm[k]; pCanonPerm[k] = pCanonPerm[k+1]; pCanonPerm[k+1] = Temp; assert( pStore[2*k] == pStore[2*(k+1)] ); Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k ); pTemp = pIn; pIn = pOut; pOut = pTemp; } Limit--; j--; } i = Limit - 1; } */ // swap if it was moved an even number of times if ( Counter & 1 ) Kit_TruthCopy( pOut, pIn, nVars ); return uCanonPhase; } /**Function************************************************************* Synopsis [Fast counting minterms in the cofactors of a function.] Description [Returns the total number of minterms in the function. The resulting array (pRes) contains the number of minterms in 0-cofactor w.r.t. each variables. The additional array (pBytes) is used for internal storage. It should have the size equal to the number of truth table bytes.] SideEffects [] SeeAlso [] ***********************************************************************/ int Kit_TruthCountMinterms( unsigned * pTruth, int nVars, int * pRes, int * pBytesInit ) { // the number of 1s if every byte as well as in the 0-cofactors w.r.t. three variables static unsigned Table[256] = { 0x00000000, 0x01010101, 0x01010001, 0x02020102, 0x01000101, 0x02010202, 0x02010102, 0x03020203, 0x01000001, 0x02010102, 0x02010002, 0x03020103, 0x02000102, 0x03010203, 0x03010103, 0x04020204, 0x00010101, 0x01020202, 0x01020102, 0x02030203, 0x01010202, 0x02020303, 0x02020203, 0x03030304, 0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x02010203, 0x03020304, 0x03020204, 0x04030305, 0x00010001, 0x01020102, 0x01020002, 0x02030103, 0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x01010002, 0x02020103, 0x02020003, 0x03030104, 0x02010103, 0x03020204, 0x03020104, 0x04030205, 0x00020102, 0x01030203, 0x01030103, 0x02040204, 0x01020203, 0x02030304, 0x02030204, 0x03040305, 0x01020103, 0x02030204, 0x02030104, 0x03040205, 0x02020204, 0x03030305, 0x03030205, 0x04040306, 0x00000101, 0x01010202, 0x01010102, 0x02020203, 0x01000202, 0x02010303, 0x02010203, 0x03020304, 0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x02000203, 0x03010304, 0x03010204, 0x04020305, 0x00010202, 0x01020303, 0x01020203, 0x02030304, 0x01010303, 0x02020404, 0x02020304, 0x03030405, 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x02010304, 0x03020405, 0x03020305, 0x04030406, 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, 0x00020203, 0x01030304, 0x01030204, 0x02040305, 0x01020304, 0x02030405, 0x02030305, 0x03040406, 0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x02020305, 0x03030406, 0x03030306, 0x04040407, 0x00000001, 0x01010102, 0x01010002, 0x02020103, 0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x01000002, 0x02010103, 0x02010003, 0x03020104, 0x02000103, 0x03010204, 0x03010104, 0x04020205, 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, 0x00010002, 0x01020103, 0x01020003, 0x02030104, 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x01010003, 0x02020104, 0x02020004, 0x03030105, 0x02010104, 0x03020205, 0x03020105, 0x04030206, 0x00020103, 0x01030204, 0x01030104, 0x02040205, 0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x01020104, 0x02030205, 0x02030105, 0x03040206, 0x02020205, 0x03030306, 0x03030206, 0x04040307, 0x00000102, 0x01010203, 0x01010103, 0x02020204, 0x01000203, 0x02010304, 0x02010204, 0x03020305, 0x01000103, 0x02010204, 0x02010104, 0x03020205, 0x02000204, 0x03010305, 0x03010205, 0x04020306, 0x00010203, 0x01020304, 0x01020204, 0x02030305, 0x01010304, 0x02020405, 0x02020305, 0x03030406, 0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x02010305, 0x03020406, 0x03020306, 0x04030407, 0x00010103, 0x01020204, 0x01020104, 0x02030205, 0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x01010104, 0x02020205, 0x02020105, 0x03030206, 0x02010205, 0x03020306, 0x03020206, 0x04030307, 0x00020204, 0x01030305, 0x01030205, 0x02040306, 0x01020305, 0x02030406, 0x02030306, 0x03040407, 0x01020205, 0x02030306, 0x02030206, 0x03040307, 0x02020306, 0x03030407, 0x03030307, 0x04040408 }; unsigned uSum; unsigned char * pTruthC, * pLimit; int * pBytes = pBytesInit; int i, iVar, Step, nWords, nBytes, nTotal; assert( nVars <= 20 ); // clear storage memset( pRes, 0, sizeof(int) * nVars ); // count the number of one's in 0-cofactors of the first three variables nTotal = uSum = 0; nWords = Kit_TruthWordNum( nVars ); nBytes = nWords * 4; pTruthC = (unsigned char *)pTruth; pLimit = pTruthC + nBytes; for ( ; pTruthC < pLimit; pTruthC++ ) { uSum += Table[*pTruthC]; *pBytes++ = (Table[*pTruthC] & 0xff); if ( (uSum & 0xff) > 246 ) { nTotal += (uSum & 0xff); pRes[0] += ((uSum >> 8) & 0xff); pRes[2] += ((uSum >> 16) & 0xff); pRes[3] += ((uSum >> 24) & 0xff); uSum = 0; } } if ( uSum ) { nTotal += (uSum & 0xff); pRes[0] += ((uSum >> 8) & 0xff); pRes[1] += ((uSum >> 16) & 0xff); pRes[2] += ((uSum >> 24) & 0xff); } // count all other variables for ( iVar = 3, Step = 1; Step < nBytes; Step *= 2, iVar++ ) for ( i = 0; i < nBytes; i += Step + Step ) { pRes[iVar] += pBytesInit[i]; pBytesInit[i] += pBytesInit[i+Step]; } assert( pBytesInit[0] == nTotal ); assert( iVar == nVars ); for ( i = 0; i < nVars; i++ ) assert( pRes[i] == Kit_TruthCofactor0Count(pTruth, nVars, i) ); return nTotal; } /**Function************************************************************* Synopsis [Prints the hex unsigned into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars ) { int nDigits, Digit, k; // write the number into the file nDigits = (1 << nVars) / 4; for ( k = nDigits - 1; k >= 0; k-- ) { Digit = ((Sign[k/8] >> ((k%8) * 4)) & 15); if ( Digit < 10 ) fprintf( pFile, "%d", Digit ); else fprintf( pFile, "%c", 'a' + Digit-10 ); } // fprintf( pFile, "\n" ); } /**Function************************************************************* Synopsis [Fast counting minterms for the functions.] Description [Returns 0 if the function is a constant.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthCountMintermsPrecomp() { int bit_count[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 }; unsigned i, uWord; for ( i = 0; i < 256; i++ ) { if ( i % 8 == 0 ) printf( "\n" ); uWord = bit_count[i]; uWord |= (bit_count[i & 0x55] << 8); uWord |= (bit_count[i & 0x33] << 16); uWord |= (bit_count[i & 0x0f] << 24); printf( "0x" ); Kit_PrintHexadecimal( stdout, &uWord, 5 ); printf( ", " ); } } /**Function************************************************************* Synopsis [Dumps truth table into a file.] Description [Generates script file for reading into ABC.] SideEffects [] SeeAlso [] ***********************************************************************/ char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile ) { static char pFileName[100]; FILE * pFile; sprintf( pFileName, "tt\\s%04d", nFile ); pFile = fopen( pFileName, "w" ); fprintf( pFile, "rt " ); Kit_PrintHexadecimal( pFile, pTruth, nVars ); fprintf( pFile, "; bdd; sop; ps\n" ); fclose( pFile ); return pFileName; } /**Function************************************************************* Synopsis [Dumps truth table into a file.] Description [Generates script file for reading into ABC.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthPrintProfile_int( unsigned * pTruth, int nVars ) { int Mints[20]; int Mints0[20]; int Mints1[20]; int Unique1[20]; int Total2[20][20]; int Unique2[20][20]; int Common2[20][20]; int nWords = Kit_TruthWordNum( nVars ); int * pBytes = ABC_ALLOC( int, nWords * 4 ); unsigned * pIn = ABC_ALLOC( unsigned, nWords ); unsigned * pOut = ABC_ALLOC( unsigned, nWords ); unsigned * pCof00 = ABC_ALLOC( unsigned, nWords ); unsigned * pCof01 = ABC_ALLOC( unsigned, nWords ); unsigned * pCof10 = ABC_ALLOC( unsigned, nWords ); unsigned * pCof11 = ABC_ALLOC( unsigned, nWords ); unsigned * pTemp; int nTotalMints, nTotalMints0, nTotalMints1; int v, u, i, iVar, nMints1; int Cof00, Cof01, Cof10, Cof11; int Coz00, Coz01, Coz10, Coz11; assert( nVars <= 20 ); assert( nVars >= 6 ); nTotalMints = Kit_TruthCountMinterms( pTruth, nVars, Mints, pBytes ); for ( v = 0; v < nVars; v++ ) Unique1[v] = Kit_TruthBooleanDiffCount( pTruth, nVars, v ); for ( v = 0; v < nVars; v++ ) for ( u = 0; u < nVars; u++ ) Total2[v][u] = Unique2[v][u] = Common2[v][u] = -1; nMints1 = (1<<(nVars-2)); for ( v = 0; v < nVars; v++ ) { // move this var to be the first Kit_TruthCopy( pIn, pTruth, nVars ); // Extra_PrintBinary( stdout, pIn, (1<= 0 && Cof00 <= nMints1 ); assert( Cof01 >= 0 && Cof01 <= nMints1 ); assert( Cof10 >= 0 && Cof10 <= nMints1 ); assert( Cof11 >= 0 && Cof11 <= nMints1 ); assert( Coz00 >= 0 && Coz00 <= nMints1 ); assert( Coz01 >= 0 && Coz01 <= nMints1 ); assert( Coz10 >= 0 && Coz10 <= nMints1 ); assert( Coz11 >= 0 && Coz11 <= nMints1 ); Common2[v][iVar] = Common2[iVar][v] = Cof00 * Coz11 + Coz00 * Cof11 + Cof01 * Coz10 + Coz01 * Cof10; Total2[v][iVar] = Total2[iVar][v] = Cof00 * Coz01 + Coz00 * Cof01 + Cof00 * Coz10 + Coz00 * Cof10 + Cof00 * Coz11 + Coz00 * Cof11 + Cof01 * Coz10 + Coz01 * Cof10 + Cof01 * Coz11 + Coz01 * Cof11 + Cof10 * Coz11 + Coz10 * Cof11 ; Kit_TruthCofactor0New( pCof00, pIn, nVars-1, u ); Kit_TruthCofactor1New( pCof01, pIn, nVars-1, u ); Kit_TruthCofactor0New( pCof10, pIn+nWords/2, nVars-1, u ); Kit_TruthCofactor1New( pCof11, pIn+nWords/2, nVars-1, u ); Unique2[v][iVar] = Unique2[iVar][v] = Kit_TruthXorCount( pCof00, pCof01, nVars-1 ) + Kit_TruthXorCount( pCof00, pCof10, nVars-1 ) + Kit_TruthXorCount( pCof00, pCof11, nVars-1 ) + Kit_TruthXorCount( pCof01, pCof10, nVars-1 ) + Kit_TruthXorCount( pCof01, pCof11, nVars-1 ) + Kit_TruthXorCount( pCof10, pCof11, nVars-1 ); } } printf( "\n" ); printf( " V: " ); for ( v = 0; v < nVars; v++ ) printf( "%8c ", v+'a' ); printf( "\n" ); printf( " M: " ); for ( v = 0; v < nVars; v++ ) printf( "%8d ", Mints[v] ); printf( "\n" ); printf( " U: " ); for ( v = 0; v < nVars; v++ ) printf( "%8d ", Unique1[v] ); printf( "\n" ); printf( "\n" ); printf( "Unique:\n" ); for ( i = 0; i < nVars; i++ ) { printf( " %2d ", i ); for ( v = 0; v < nVars; v++ ) printf( "%8d ", Unique2[i][v] ); printf( "\n" ); } printf( "Common:\n" ); for ( i = 0; i < nVars; i++ ) { printf( " %2d ", i ); for ( v = 0; v < nVars; v++ ) printf( "%8d ", Common2[i][v] ); printf( "\n" ); } printf( "Total:\n" ); for ( i = 0; i < nVars; i++ ) { printf( " %2d ", i ); for ( v = 0; v < nVars; v++ ) printf( "%8d ", Total2[i][v] ); printf( "\n" ); } ABC_FREE( pIn ); ABC_FREE( pOut ); ABC_FREE( pCof00 ); ABC_FREE( pCof01 ); ABC_FREE( pCof10 ); ABC_FREE( pCof11 ); ABC_FREE( pBytes ); } /**Function************************************************************* Synopsis [Dumps truth table into a file.] Description [Generates script file for reading into ABC.] SideEffects [] SeeAlso [] ***********************************************************************/ void Kit_TruthPrintProfile( unsigned * pTruth, int nVars ) { unsigned uTruth[2]; if ( nVars >= 6 ) { Kit_TruthPrintProfile_int( pTruth, nVars ); return; } assert( nVars >= 2 ); uTruth[0] = pTruth[0]; uTruth[1] = pTruth[0]; Kit_TruthPrintProfile( uTruth, 6 ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END