/**CFile**************************************************************** FileName [saigSimMv.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Sequential AIG package.] Synopsis [Multi-valued simulation.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: saigSimMv.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "saig.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define SAIG_DIFF_VALUES 8 #define SAIG_UNDEF_VALUE 0x1ffffffe //536870910 // old AIG typedef struct Saig_MvObj_t_ Saig_MvObj_t; struct Saig_MvObj_t_ { int iFan0; int iFan1; unsigned Type : 3; unsigned Value : 29; }; // new AIG typedef struct Saig_MvAnd_t_ Saig_MvAnd_t; struct Saig_MvAnd_t_ { int iFan0; int iFan1; int iNext; }; // simulation manager typedef struct Saig_MvMan_t_ Saig_MvMan_t; struct Saig_MvMan_t_ { // user data Aig_Man_t * pAig; // original AIG // parameters int nStatesMax; // maximum number of states int nLevelsMax; // maximum number of levels int nValuesMax; // maximum number of values int nFlops; // number of flops // compacted AIG Saig_MvObj_t * pAigOld; // AIG objects Vec_Ptr_t * vFlops; // collected flops Vec_Int_t * vXFlops; // flops that had at least one X-value Vec_Ptr_t * vTired; // collected flops unsigned * pTStates; // hash table for states int nTStatesSize; // hash table size Aig_MmFixed_t * pMemStates; // memory for states Vec_Ptr_t * vStates; // reached states int * pRegsUndef; // count the number of undef values int ** pRegsValues; // write the first different values int * nRegsValues; // count the number of different values int nRUndefs; // the number of undef registers int nRValues[SAIG_DIFF_VALUES+1]; // the number of registers with given values // internal AIG Saig_MvAnd_t * pAigNew; // AIG nodes int nObjsAlloc; // the number of objects allocated int nObjs; // the number of objects int nPis; // the number of primary inputs int * pTNodes; // hash table int nTNodesSize; // hash table size unsigned char * pLevels; // levels of AIG nodes }; static inline int Saig_MvObjFaninC0( Saig_MvObj_t * pObj ) { return pObj->iFan0 & 1; } static inline int Saig_MvObjFaninC1( Saig_MvObj_t * pObj ) { return pObj->iFan1 & 1; } static inline int Saig_MvObjFanin0( Saig_MvObj_t * pObj ) { return pObj->iFan0 >> 1; } static inline int Saig_MvObjFanin1( Saig_MvObj_t * pObj ) { return pObj->iFan1 >> 1; } static inline int Saig_MvConst0() { return 1; } static inline int Saig_MvConst1() { return 0; } static inline int Saig_MvConst( int c ) { return !c; } static inline int Saig_MvUndef() { return SAIG_UNDEF_VALUE; } static inline int Saig_MvIsConst0( int iNode ) { return iNode == 1; } static inline int Saig_MvIsConst1( int iNode ) { return iNode == 0; } static inline int Saig_MvIsConst( int iNode ) { return iNode < 2; } static inline int Saig_MvIsUndef( int iNode ) { return iNode == SAIG_UNDEF_VALUE; } static inline int Saig_MvRegular( int iNode ) { return (iNode & ~01); } static inline int Saig_MvNot( int iNode ) { return (iNode ^ 01); } static inline int Saig_MvNotCond( int iNode, int c ) { return (iNode ^ (c)); } static inline int Saig_MvIsComplement( int iNode ) { return (int)(iNode & 01); } static inline int Saig_MvLit2Var( int iNode ) { return (iNode >> 1); } static inline int Saig_MvVar2Lit( int iVar ) { return (iVar << 1); } static inline int Saig_MvLev( Saig_MvMan_t * p, int iNode ) { return p->pLevels[iNode >> 1]; } // iterator over compacted objects #define Saig_MvManForEachObj( pAig, pEntry ) \ for ( pEntry = pAig; pEntry->Type != AIG_OBJ_VOID; pEntry++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Creates reduced manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Saig_MvObj_t * Saig_ManCreateReducedAig( Aig_Man_t * p, Vec_Ptr_t ** pvFlops ) { Saig_MvObj_t * pAig, * pEntry; Aig_Obj_t * pObj; int i; *pvFlops = Vec_PtrAlloc( Aig_ManRegNum(p) ); pAig = ABC_CALLOC( Saig_MvObj_t, Aig_ManObjNumMax(p)+1 ); Aig_ManForEachObj( p, pObj, i ) { pEntry = pAig + i; pEntry->Type = pObj->Type; if ( Aig_ObjIsCi(pObj) || i == 0 ) { if ( Saig_ObjIsLo(p, pObj) ) { pEntry->iFan0 = (Saig_ObjLoToLi(p, pObj)->Id << 1); pEntry->iFan1 = -1; Vec_PtrPush( *pvFlops, pEntry ); } continue; } pEntry->iFan0 = (Aig_ObjFaninId0(pObj) << 1) | Aig_ObjFaninC0(pObj); if ( Aig_ObjIsCo(pObj) ) continue; assert( Aig_ObjIsNode(pObj) ); pEntry->iFan1 = (Aig_ObjFaninId1(pObj) << 1) | Aig_ObjFaninC1(pObj); } pEntry = pAig + Aig_ManObjNumMax(p); pEntry->Type = AIG_OBJ_VOID; return pAig; } /**Function************************************************************* Synopsis [Creates a new node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Saig_MvCreateObj( Saig_MvMan_t * p, int iFan0, int iFan1 ) { Saig_MvAnd_t * pNode; if ( p->nObjs == p->nObjsAlloc ) { p->pAigNew = ABC_REALLOC( Saig_MvAnd_t, p->pAigNew, 2*p->nObjsAlloc ); p->pLevels = ABC_REALLOC( unsigned char, p->pLevels, 2*p->nObjsAlloc ); p->nObjsAlloc *= 2; } pNode = p->pAigNew + p->nObjs; pNode->iFan0 = iFan0; pNode->iFan1 = iFan1; pNode->iNext = 0; if ( iFan0 || iFan1 ) p->pLevels[p->nObjs] = 1 + Abc_MaxInt( Saig_MvLev(p, iFan0), Saig_MvLev(p, iFan1) ); else p->pLevels[p->nObjs] = 0, p->nPis++; return p->nObjs++; } /**Function************************************************************* Synopsis [Creates multi-valued simulation manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Saig_MvMan_t * Saig_MvManStart( Aig_Man_t * pAig, int nFramesSatur ) { Saig_MvMan_t * p; int i; assert( Aig_ManRegNum(pAig) > 0 ); p = (Saig_MvMan_t *)ABC_ALLOC( Saig_MvMan_t, 1 ); memset( p, 0, sizeof(Saig_MvMan_t) ); // set parameters p->pAig = pAig; p->nStatesMax = 2 * nFramesSatur + 100; p->nLevelsMax = 4; p->nValuesMax = SAIG_DIFF_VALUES; p->nFlops = Aig_ManRegNum(pAig); // compacted AIG p->pAigOld = Saig_ManCreateReducedAig( pAig, &p->vFlops ); p->nTStatesSize = Abc_PrimeCudd( p->nStatesMax ); p->pTStates = ABC_CALLOC( unsigned, p->nTStatesSize ); p->pMemStates = Aig_MmFixedStart( sizeof(int) * (p->nFlops+1), p->nStatesMax ); p->vStates = Vec_PtrAlloc( p->nStatesMax ); Vec_PtrPush( p->vStates, NULL ); p->pRegsUndef = ABC_CALLOC( int, p->nFlops ); p->pRegsValues = ABC_ALLOC( int *, p->nFlops ); p->pRegsValues[0] = ABC_ALLOC( int, p->nValuesMax * p->nFlops ); for ( i = 1; i < p->nFlops; i++ ) p->pRegsValues[i] = p->pRegsValues[i-1] + p->nValuesMax; p->nRegsValues = ABC_CALLOC( int, p->nFlops ); p->vTired = Vec_PtrAlloc( 100 ); // internal AIG p->nObjsAlloc = 1000000; p->pAigNew = ABC_ALLOC( Saig_MvAnd_t, p->nObjsAlloc ); p->nTNodesSize = Abc_PrimeCudd( p->nObjsAlloc / 3 ); p->pTNodes = ABC_CALLOC( int, p->nTNodesSize ); p->pLevels = ABC_ALLOC( unsigned char, p->nObjsAlloc ); Saig_MvCreateObj( p, 0, 0 ); return p; } /**Function************************************************************* Synopsis [Destroys multi-valued simulation manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Saig_MvManStop( Saig_MvMan_t * p ) { Aig_MmFixedStop( p->pMemStates, 0 ); Vec_PtrFree( p->vStates ); Vec_IntFreeP( &p->vXFlops ); Vec_PtrFree( p->vFlops ); Vec_PtrFree( p->vTired ); ABC_FREE( p->pRegsValues[0] ); ABC_FREE( p->pRegsValues ); ABC_FREE( p->nRegsValues ); ABC_FREE( p->pRegsUndef ); ABC_FREE( p->pAigOld ); ABC_FREE( p->pTStates ); ABC_FREE( p->pAigNew ); ABC_FREE( p->pTNodes ); ABC_FREE( p->pLevels ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Hashing the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Saig_MvHash( int iFan0, int iFan1, int TableSize ) { unsigned Key = 0; assert( iFan0 < iFan1 ); Key ^= Saig_MvLit2Var(iFan0) * 7937; Key ^= Saig_MvLit2Var(iFan1) * 2971; Key ^= Saig_MvIsComplement(iFan0) * 911; Key ^= Saig_MvIsComplement(iFan1) * 353; return (int)(Key % TableSize); } /**Function************************************************************* Synopsis [Returns the place where this node is stored (or should be stored).] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int * Saig_MvTableFind( Saig_MvMan_t * p, int iFan0, int iFan1 ) { Saig_MvAnd_t * pEntry; int * pPlace = p->pTNodes + Saig_MvHash( iFan0, iFan1, p->nTNodesSize ); for ( pEntry = (*pPlace)? p->pAigNew + *pPlace : NULL; pEntry; pPlace = &pEntry->iNext, pEntry = (*pPlace)? p->pAigNew + *pPlace : NULL ) if ( pEntry->iFan0 == iFan0 && pEntry->iFan1 == iFan1 ) break; return pPlace; } /**Function************************************************************* Synopsis [Performs an AND-operation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Saig_MvAnd( Saig_MvMan_t * p, int iFan0, int iFan1, int fFirst ) { if ( iFan0 == iFan1 ) return iFan0; if ( iFan0 == Saig_MvNot(iFan1) ) return Saig_MvConst0(); if ( Saig_MvIsConst(iFan0) ) return Saig_MvIsConst1(iFan0) ? iFan1 : Saig_MvConst0(); if ( Saig_MvIsConst(iFan1) ) return Saig_MvIsConst1(iFan1) ? iFan0 : Saig_MvConst0(); if ( Saig_MvIsUndef(iFan0) || Saig_MvIsUndef(iFan1) ) return Saig_MvUndef(); // if ( Saig_MvLev(p, iFan0) >= p->nLevelsMax || Saig_MvLev(p, iFan1) >= p->nLevelsMax ) // return Saig_MvUndef(); // go undef after the first frame if ( !fFirst ) return Saig_MvUndef(); if ( iFan0 > iFan1 ) { int Temp = iFan0; iFan0 = iFan1; iFan1 = Temp; } { int * pPlace; pPlace = Saig_MvTableFind( p, iFan0, iFan1 ); if ( *pPlace == 0 ) { if ( pPlace >= (int*)p->pAigNew && pPlace < (int*)(p->pAigNew + p->nObjsAlloc) ) { int iPlace = pPlace - (int*)p->pAigNew; int iNode = Saig_MvCreateObj( p, iFan0, iFan1 ); ((int*)p->pAigNew)[iPlace] = iNode; return Saig_MvVar2Lit( iNode ); } else *pPlace = Saig_MvCreateObj( p, iFan0, iFan1 ); } return Saig_MvVar2Lit( *pPlace ); } } /**Function************************************************************* Synopsis [Propagates one edge.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Saig_MvSimulateValue0( Saig_MvObj_t * pAig, Saig_MvObj_t * pObj ) { Saig_MvObj_t * pObj0 = pAig + Saig_MvObjFanin0(pObj); if ( Saig_MvIsUndef( pObj0->Value ) ) return Saig_MvUndef(); return Saig_MvNotCond( pObj0->Value, Saig_MvObjFaninC0(pObj) ); } static inline int Saig_MvSimulateValue1( Saig_MvObj_t * pAig, Saig_MvObj_t * pObj ) { Saig_MvObj_t * pObj1 = pAig + Saig_MvObjFanin1(pObj); if ( Saig_MvIsUndef( pObj1->Value ) ) return Saig_MvUndef(); return Saig_MvNotCond( pObj1->Value, Saig_MvObjFaninC1(pObj) ); } /**Function************************************************************* Synopsis [Prints MV state.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Saig_MvPrintState( int Iter, Saig_MvMan_t * p ) { Saig_MvObj_t * pEntry; int i; printf( "%3d : ", Iter ); Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) { if ( pEntry->Value == SAIG_UNDEF_VALUE ) printf( " *" ); else printf( "%5d", pEntry->Value ); } printf( "\n" ); } /**Function************************************************************* Synopsis [Performs one iteration of simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Saig_MvSimulateFrame( Saig_MvMan_t * p, int fFirst, int fVerbose ) { Saig_MvObj_t * pEntry; int i; Saig_MvManForEachObj( p->pAigOld, pEntry ) { if ( pEntry->Type == AIG_OBJ_AND ) { pEntry->Value = Saig_MvAnd( p, Saig_MvSimulateValue0(p->pAigOld, pEntry), Saig_MvSimulateValue1(p->pAigOld, pEntry), fFirst ); } else if ( pEntry->Type == AIG_OBJ_CO ) pEntry->Value = Saig_MvSimulateValue0(p->pAigOld, pEntry); else if ( pEntry->Type == AIG_OBJ_CI ) { if ( pEntry->iFan1 == 0 ) // true PI { if ( fFirst ) pEntry->Value = Saig_MvVar2Lit( Saig_MvCreateObj( p, 0, 0 ) ); else pEntry->Value = SAIG_UNDEF_VALUE; } // else if ( fFirst ) // register output // pEntry->Value = Saig_MvConst0(); // else // pEntry->Value = Saig_MvSimulateValue0(p->pAigOld, pEntry); } else if ( pEntry->Type == AIG_OBJ_CONST1 ) pEntry->Value = Saig_MvConst1(); else if ( pEntry->Type != AIG_OBJ_NONE ) assert( 0 ); } // transfer to registers Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) pEntry->Value = Saig_MvSimulateValue0( p->pAigOld, pEntry ); } /**Function************************************************************* Synopsis [Computes hash value of the node using its simulation info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_MvSimHash( unsigned * pState, int nFlops, int TableSize ) { static int s_SPrimes[16] = { 1610612741, 805306457, 402653189, 201326611, 100663319, 50331653, 25165843, 12582917, 6291469, 3145739, 1572869, 786433, 393241, 196613, 98317, 49157 }; unsigned uHash = 0; int i; for ( i = 0; i < nFlops; i++ ) uHash ^= pState[i] * s_SPrimes[i & 0xF]; return (int)(uHash % TableSize); } /**Function************************************************************* Synopsis [Returns the place where this state is stored (or should be stored).] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline unsigned * Saig_MvSimTableFind( Saig_MvMan_t * p, unsigned * pState ) { unsigned * pEntry; unsigned * pPlace = p->pTStates + Saig_MvSimHash( pState+1, p->nFlops, p->nTStatesSize ); for ( pEntry = (*pPlace)? (unsigned *)Vec_PtrEntry(p->vStates, *pPlace) : NULL; pEntry; pPlace = pEntry, pEntry = (*pPlace)? (unsigned *)Vec_PtrEntry(p->vStates, *pPlace) : NULL ) if ( memcmp( pEntry+1, pState+1, sizeof(int)*p->nFlops ) == 0 ) break; return pPlace; } /**Function************************************************************* Synopsis [Saves current state.] Description [Returns -1 if there is no fixed point.] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_MvSaveState( Saig_MvMan_t * p ) { Saig_MvObj_t * pEntry; unsigned * pState, * pPlace; int i; pState = (unsigned *)Aig_MmFixedEntryFetch( p->pMemStates ); pState[0] = 0; Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) pState[i+1] = pEntry->Value; pPlace = Saig_MvSimTableFind( p, pState ); if ( *pPlace ) return *pPlace; *pPlace = Vec_PtrSize( p->vStates ); Vec_PtrPush( p->vStates, pState ); return -1; } /**Function************************************************************* Synopsis [Performs multi-valued simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Saig_MvManPostProcess( Saig_MvMan_t * p, int iState ) { Saig_MvObj_t * pEntry; unsigned * pState; int i, k, j, nTotal = 0, iFlop; Vec_Int_t * vUniques = Vec_IntAlloc( 100 ); Vec_Int_t * vCounter = Vec_IntAlloc( 100 ); // count registers that never became undef Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) if ( p->pRegsUndef[i] == 0 ) nTotal++; printf( "The number of registers that never became undef = %d. (Total = %d.)\n", nTotal, p->nFlops ); Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) { if ( p->pRegsUndef[i] ) continue; Vec_IntForEachEntry( vUniques, iFlop, k ) { Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, j, 1 ) if ( pState[iFlop+1] != pState[i+1] ) break; if ( j == Vec_PtrSize(p->vStates) ) { Vec_IntAddToEntry( vCounter, k, 1 ); break; } } if ( k == Vec_IntSize(vUniques) ) { Vec_IntPush( vUniques, i ); Vec_IntPush( vCounter, 1 ); } } Vec_IntForEachEntry( vUniques, iFlop, i ) { printf( "FLOP %5d : (%3d) ", iFlop, Vec_IntEntry(vCounter,i) ); /* for ( k = 0; k < p->nRegsValues[iFlop]; k++ ) if ( p->pRegsValues[iFlop][k] == SAIG_UNDEF_VALUE ) printf( "* " ); else printf( "%d ", p->pRegsValues[iFlop][k] ); printf( "\n" ); */ Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, k, 1 ) { if ( k == iState+1 ) printf( " # " ); if ( pState[iFlop+1] == SAIG_UNDEF_VALUE ) printf( "*" ); else printf( "%d", pState[iFlop+1] ); } printf( "\n" ); // if ( ++Counter == 10 ) // break; } Vec_IntFree( vUniques ); Vec_IntFree( vCounter ); } /**Function************************************************************* Synopsis [Performs multi-valued simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Saig_MvManFindXFlops( Saig_MvMan_t * p ) { Vec_Int_t * vXFlops; unsigned * pState; int i, k; vXFlops = Vec_IntStart( p->nFlops ); Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, i, 1 ) { for ( k = 0; k < p->nFlops; k++ ) if ( Saig_MvIsUndef(pState[k+1]) ) Vec_IntWriteEntry( vXFlops, k, 1 ); } return vXFlops; } /**Function************************************************************* Synopsis [Checks if the flop is an oscilator.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_MvManCheckOscilator( Saig_MvMan_t * p, int iFlop ) { Vec_Int_t * vValues; unsigned * pState; int k, Per, Entry; // collect values of this flop vValues = Vec_IntAlloc( 100 ); Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, k, 1 ) { Vec_IntPush( vValues, pState[iFlop+1] ); //printf( "%d ", pState[iFlop+1] ); } //printf( "\n" ); assert( Saig_MvIsConst0( Vec_IntEntry(vValues,0) ) ); // look for constants for ( Per = 0; Per < Vec_IntSize(vValues)/2; Per++ ) { // find the first non-const0 Vec_IntForEachEntryStart( vValues, Entry, Per, Per ) if ( !Saig_MvIsConst0(Entry) ) break; if ( Per == Vec_IntSize(vValues) ) break; // find the first const0 Vec_IntForEachEntryStart( vValues, Entry, Per, Per ) if ( Saig_MvIsConst0(Entry) ) break; if ( Per == Vec_IntSize(vValues) ) break; // try to determine period assert( Saig_MvIsConst0( Vec_IntEntry(vValues,Per) ) ); for ( k = Per; k < Vec_IntSize(vValues); k++ ) if ( Vec_IntEntry(vValues, k-Per) != Vec_IntEntry(vValues, k) ) break; if ( k < Vec_IntSize(vValues) ) continue; Vec_IntFree( vValues ); //printf( "Period = %d\n", Per ); return Per; } Vec_IntFree( vValues ); return 0; } /**Function************************************************************* Synopsis [Returns const0 and binary flops.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Saig_MvManFindConstBinaryFlops( Saig_MvMan_t * p, Vec_Int_t ** pvBinary ) { unsigned * pState; Vec_Int_t * vBinary, * vConst0; int i, k, fConst0; // detect constant flops vConst0 = Vec_IntAlloc( p->nFlops ); vBinary = Vec_IntAlloc( p->nFlops ); for ( k = 0; k < p->nFlops; k++ ) { // check if this flop is constant 0 in all states fConst0 = 1; Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, i, 1 ) { if ( !Saig_MvIsConst0(pState[k+1]) ) fConst0 = 0; if ( Saig_MvIsUndef(pState[k+1]) ) break; } if ( i < Vec_PtrSize(p->vStates) ) continue; // the flop is binary-valued if ( fConst0 ) Vec_IntPush( vConst0, k ); else Vec_IntPush( vBinary, k ); } *pvBinary = vBinary; return vConst0; } /**Function************************************************************* Synopsis [Find oscilators.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Saig_MvManFindOscilators( Saig_MvMan_t * p, Vec_Int_t ** pvConst0 ) { Vec_Int_t * vBinary, * vOscils; int Entry, i; // detect constant flops *pvConst0 = Saig_MvManFindConstBinaryFlops( p, &vBinary ); // check binary flops vOscils = Vec_IntAlloc( 100 ); Vec_IntForEachEntry( vBinary, Entry, i ) if ( Saig_MvManCheckOscilator( p, Entry ) ) Vec_IntPush( vOscils, Entry ); Vec_IntFree( vBinary ); return vOscils; } /**Function************************************************************* Synopsis [Find constants and oscilators.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Saig_MvManCreateNextSkip( Saig_MvMan_t * p ) { Vec_Int_t * vConst0, * vOscils, * vXFlops; int i, Entry; vOscils = Saig_MvManFindOscilators( p, &vConst0 ); //printf( "Found %d constants and %d oscilators.\n", Vec_IntSize(vConst0), Vec_IntSize(vOscils) ); vXFlops = Vec_IntAlloc( p->nFlops ); Vec_IntFill( vXFlops, p->nFlops, 1 ); Vec_IntForEachEntry( vConst0, Entry, i ) Vec_IntWriteEntry( vXFlops, Entry, 0 ); Vec_IntForEachEntry( vOscils, Entry, i ) Vec_IntWriteEntry( vXFlops, Entry, 0 ); Vec_IntFree( vOscils ); Vec_IntFree( vConst0 ); return vXFlops; } /**Function************************************************************* Synopsis [Finds equivalent flops.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Saig_MvManDeriveMap( Saig_MvMan_t * p, int fVerbose ) { Vec_Int_t * vConst0, * vBinValued; Vec_Ptr_t * vMap = NULL; Aig_Obj_t * pObj; unsigned * pState; int i, k, j, FlopK, FlopJ; int Counter1 = 0, Counter2 = 0; // prepare CI map vMap = Vec_PtrAlloc( Aig_ManCiNum(p->pAig) ); Aig_ManForEachCi( p->pAig, pObj, i ) Vec_PtrPush( vMap, pObj ); // detect constant flops vConst0 = Saig_MvManFindConstBinaryFlops( p, &vBinValued ); // set constants Vec_IntForEachEntry( vConst0, FlopK, k ) { Vec_PtrWriteEntry( vMap, Saig_ManPiNum(p->pAig) + FlopK, Aig_ManConst0(p->pAig) ); Counter1++; } Vec_IntFree( vConst0 ); // detect equivalent (non-ternary flops) Vec_IntForEachEntry( vBinValued, FlopK, k ) if ( FlopK >= 0 ) Vec_IntForEachEntryStart( vBinValued, FlopJ, j, k+1 ) if ( FlopJ >= 0 ) { // check if they are equal Vec_PtrForEachEntryStart( unsigned *, p->vStates, pState, i, 1 ) if ( pState[FlopK+1] != pState[FlopJ+1] ) break; if ( i < Vec_PtrSize(p->vStates) ) continue; // set the equivalence Vec_PtrWriteEntry( vMap, Saig_ManPiNum(p->pAig) + FlopJ, Saig_ManLo(p->pAig, FlopK) ); Vec_IntWriteEntry( vBinValued, j, -1 ); Counter2++; } if ( fVerbose ) printf( "Detected %d const0 flops and %d pairs of equiv binary flops.\n", Counter1, Counter2 ); Vec_IntFree( vBinValued ); if ( Counter1 == 0 && Counter2 == 0 ) Vec_PtrFreeP( &vMap ); return vMap; } /**Function************************************************************* Synopsis [Performs multi-valued simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Saig_MvManSimulate( Aig_Man_t * pAig, int nFramesSymb, int nFramesSatur, int fVerbose, int fVeryVerbose ) { Vec_Ptr_t * vMap; Saig_MvMan_t * p; Saig_MvObj_t * pEntry; int f, i, iState; abctime clk = Abc_Clock(); assert( nFramesSymb >= 1 && nFramesSymb <= nFramesSatur ); // start manager p = Saig_MvManStart( pAig, nFramesSatur ); if ( fVerbose ) ABC_PRT( "Constructing the problem", Abc_Clock() - clk ); // initialize registers Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) pEntry->Value = Saig_MvConst0(); Saig_MvSaveState( p ); if ( fVeryVerbose ) Saig_MvPrintState( 0, p ); // simulate until convergence clk = Abc_Clock(); for ( f = 0; ; f++ ) { if ( f == nFramesSatur ) { if ( fVerbose ) printf( "Begining to saturate simulation after %d frames\n", f ); // find all flops that have at least one X value in the past and set them to X forever p->vXFlops = Saig_MvManFindXFlops( p ); } if ( f == 2 * nFramesSatur ) { if ( fVerbose ) printf( "Agressively saturating simulation after %d frames\n", f ); Vec_IntFree( p->vXFlops ); p->vXFlops = Saig_MvManCreateNextSkip( p ); } // retire some flops if ( p->vXFlops ) { Vec_PtrForEachEntry( Saig_MvObj_t *, p->vFlops, pEntry, i ) if ( Vec_IntEntry( p->vXFlops, i ) ) pEntry->Value = SAIG_UNDEF_VALUE; } // simulate timeframe Saig_MvSimulateFrame( p, (int)(f < nFramesSymb), fVerbose ); // save and print state iState = Saig_MvSaveState( p ); if ( fVeryVerbose ) Saig_MvPrintState( f+1, p ); if ( iState >= 0 ) { if ( fVerbose ) printf( "Converged after %d frames with lasso in state %d. Cycle = %d.\n", f+1, iState-1, f+2-iState ); // printf( "Total number of PIs = %d. AND nodes = %d.\n", p->nPis, p->nObjs - p->nPis ); break; } } // printf( "Coverged after %d frames.\n", f ); if ( fVerbose ) ABC_PRT( "Multi-valued simulation", Abc_Clock() - clk ); // implement equivalences // Saig_MvManPostProcess( p, iState-1 ); vMap = Saig_MvManDeriveMap( p, fVerbose ); Saig_MvManStop( p ); // return Aig_ManDupSimple( pAig ); return vMap; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END