/**CFile**************************************************************** FileName [saigLoc.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Sequential AIG package.] Synopsis [K-step induction for one property only.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: saigLoc.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "saig.h" #include "sat/cnf/cnf.h" #include "sat/bsat/satSolver.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Returns 1 if two state are equal.] Description [Array vState contains indexes of CNF variables for each flop in the first N time frames (0 < i < k, i < N, k < N).] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_ManStatesAreEqual( sat_solver * pSat, Vec_Int_t * vState, int nRegs, int i, int k ) { int * pStateI = (int *)Vec_IntArray(vState) + nRegs * i; int * pStateK = (int *)Vec_IntArray(vState) + nRegs * k; int v; assert( i && k && i < k ); assert( nRegs * k <= Vec_IntSize(vState) ); // check if the states are available for ( v = 0; v < nRegs; v++ ) if ( pStateI[v] >= 0 && pStateK[v] == -1 ) return 0; /* printf( "\nchecking uniqueness\n" ); printf( "%3d : ", i ); for ( v = 0; v < nRegs; v++ ) printf( "%d", sat_solver_var_value(pSat, pStateI[v]) ); printf( "\n" ); printf( "%3d : ", k ); for ( v = 0; v < nRegs; v++ ) printf( "%d", sat_solver_var_value(pSat, pStateK[v]) ); printf( "\n" ); */ for ( v = 0; v < nRegs; v++ ) if ( pStateI[v] >= 0 ) { if ( sat_solver_var_value(pSat, pStateI[v]) != sat_solver_var_value(pSat, pStateK[v]) ) return 0; } return 1; } /**Function************************************************************* Synopsis [Add uniqueness constraint.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_ManAddUniqueness( sat_solver * pSat, Vec_Int_t * vState, int nRegs, int i, int k, int * pnSatVarNum, int * pnClauses, int fVerbose ) { int * pStateI = (int *)Vec_IntArray(vState) + nRegs * i; int * pStateK = (int *)Vec_IntArray(vState) + nRegs * k; int v, iVars, nSatVarsOld, RetValue, * pClause; assert( i && k && i < k ); assert( nRegs * k <= Vec_IntSize(vState) ); // check if the states are available for ( v = 0; v < nRegs; v++ ) if ( pStateI[v] >= 0 && pStateK[v] == -1 ) { if ( fVerbose ) printf( "Cannot constrain an incomplete state.\n" ); return 0; } // add XORs nSatVarsOld = *pnSatVarNum; for ( v = 0; v < nRegs; v++ ) if ( pStateI[v] >= 0 ) { *pnClauses += 4; RetValue = Cnf_DataAddXorClause( pSat, pStateI[v], pStateK[v], (*pnSatVarNum)++ ); if ( RetValue == 0 ) { if ( fVerbose ) printf( "SAT solver became UNSAT after adding a uniqueness constraint.\n" ); return 1; } } // add OR clause (*pnClauses)++; iVars = 0; pClause = ABC_ALLOC( int, nRegs ); for ( v = nSatVarsOld; v < *pnSatVarNum; v++ ) pClause[iVars++] = toLitCond( v, 0 ); assert( iVars <= nRegs ); RetValue = sat_solver_addclause( pSat, pClause, pClause + iVars ); ABC_FREE( pClause ); if ( RetValue == 0 ) { if ( fVerbose ) printf( "SAT solver became UNSAT after adding a uniqueness constraint.\n" ); return 1; } return 0; } /**Function************************************************************* Synopsis [Performs induction by unrolling timeframes backward.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Saig_ManInduction( Aig_Man_t * p, int nTimeOut, int nFramesMax, int nConfMax, int fUnique, int fUniqueAll, int fGetCex, int fVerbose, int fVeryVerbose ) { sat_solver * pSat; Aig_Man_t * pAigPart = NULL; Cnf_Dat_t * pCnfPart = NULL; Vec_Int_t * vTopVarNums, * vState, * vTopVarIds = NULL; Vec_Ptr_t * vTop, * vBot; Aig_Obj_t * pObjPi, * pObjPiCopy, * pObjPo; int i, k, f, Lits[2], status = -1, RetValue, nSatVarNum, nConfPrev; int nOldSize, iReg, iLast, fAdded, nConstrs = 0, nClauses = 0; abctime clk, nTimeToStop = nTimeOut ? nTimeOut * CLOCKS_PER_SEC + Abc_Clock() : 0; assert( fUnique == 0 || fUniqueAll == 0 ); assert( Saig_ManPoNum(p) == 1 ); Aig_ManSetCioIds( p ); // start the top by including the PO vBot = Vec_PtrAlloc( 100 ); vTop = Vec_PtrAlloc( 100 ); vState = Vec_IntAlloc( 1000 ); Vec_PtrPush( vTop, Aig_ManCo(p, 0) ); // start the array of CNF variables vTopVarNums = Vec_IntAlloc( 100 ); // start the solver pSat = sat_solver_new(); sat_solver_setnvars( pSat, 1000 ); // set runtime limit if ( nTimeToStop ) sat_solver_set_runtime_limit( pSat, nTimeToStop ); // iterate backward unrolling RetValue = -1; nSatVarNum = 0; if ( fVerbose ) printf( "Induction parameters: FramesMax = %5d. ConflictMax = %6d.\n", nFramesMax, nConfMax ); for ( f = 0; ; f++ ) { if ( f > 0 ) { Aig_ManStop( pAigPart ); Cnf_DataFree( pCnfPart ); } clk = Abc_Clock(); // get the bottom Aig_SupportNodes( p, (Aig_Obj_t **)Vec_PtrArray(vTop), Vec_PtrSize(vTop), vBot ); // derive AIG for the part between top and bottom pAigPart = Aig_ManDupSimpleDfsPart( p, vBot, vTop ); // convert it into CNF pCnfPart = Cnf_Derive( pAigPart, Aig_ManCoNum(pAigPart) ); Cnf_DataLift( pCnfPart, nSatVarNum ); nSatVarNum += pCnfPart->nVars; nClauses += pCnfPart->nClauses; // remember top frame var IDs if ( fGetCex && vTopVarIds == NULL ) { vTopVarIds = Vec_IntStartFull( Aig_ManCiNum(p) ); Aig_ManForEachCi( p, pObjPi, i ) { if ( pObjPi->pData == NULL ) continue; pObjPiCopy = (Aig_Obj_t *)pObjPi->pData; assert( Aig_ObjIsCi(pObjPiCopy) ); if ( Saig_ObjIsPi(p, pObjPi) ) Vec_IntWriteEntry( vTopVarIds, Aig_ObjCioId(pObjPi) + Saig_ManRegNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] ); else if ( Saig_ObjIsLo(p, pObjPi) ) Vec_IntWriteEntry( vTopVarIds, Aig_ObjCioId(pObjPi) - Saig_ManPiNum(p), pCnfPart->pVarNums[Aig_ObjId(pObjPiCopy)] ); else assert( 0 ); } } // stitch variables of top and bot assert( Aig_ManCoNum(pAigPart)-1 == Vec_IntSize(vTopVarNums) ); Aig_ManForEachCo( pAigPart, pObjPo, i ) { if ( i == 0 ) { // do not perform inductive strengthening // if ( f > 0 ) // continue; // add topmost literal Lits[0] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], f>0 ); if ( !sat_solver_addclause( pSat, Lits, Lits+1 ) ) assert( 0 ); nClauses++; continue; } Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 0 ); Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 1 ); if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) ) assert( 0 ); Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i-1), 1 ); Lits[1] = toLitCond( pCnfPart->pVarNums[pObjPo->Id], 0 ); if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) ) assert( 0 ); nClauses += 2; } // add CNF to the SAT solver for ( i = 0; i < pCnfPart->nClauses; i++ ) if ( !sat_solver_addclause( pSat, pCnfPart->pClauses[i], pCnfPart->pClauses[i+1] ) ) break; if ( i < pCnfPart->nClauses ) { // printf( "SAT solver became UNSAT after adding clauses.\n" ); RetValue = 1; break; } // create new set of POs to derive new top Vec_PtrClear( vTop ); Vec_PtrPush( vTop, Aig_ManCo(p, 0) ); Vec_IntClear( vTopVarNums ); nOldSize = Vec_IntSize(vState); Vec_IntFillExtra( vState, nOldSize + Aig_ManRegNum(p), -1 ); Vec_PtrForEachEntry( Aig_Obj_t *, vBot, pObjPi, i ) { assert( Aig_ObjIsCi(pObjPi) ); if ( Saig_ObjIsLo(p, pObjPi) ) { pObjPiCopy = (Aig_Obj_t *)pObjPi->pData; assert( pObjPiCopy != NULL ); Vec_PtrPush( vTop, Saig_ObjLoToLi(p, pObjPi) ); Vec_IntPush( vTopVarNums, pCnfPart->pVarNums[pObjPiCopy->Id] ); iReg = pObjPi->CioId - Saig_ManPiNum(p); assert( iReg >= 0 && iReg < Aig_ManRegNum(p) ); Vec_IntWriteEntry( vState, nOldSize+iReg, pCnfPart->pVarNums[pObjPiCopy->Id] ); } } assert( Vec_IntSize(vState)%Aig_ManRegNum(p) == 0 ); iLast = Vec_IntSize(vState)/Aig_ManRegNum(p); if ( fUniqueAll ) { for ( i = 1; i < iLast-1; i++ ) { nConstrs++; if ( fVeryVerbose ) printf( "Adding constaint for state %2d and state %2d.\n", i, iLast-1 ); if ( Saig_ManAddUniqueness( pSat, vState, Aig_ManRegNum(p), i, iLast-1, &nSatVarNum, &nClauses, fVerbose ) ) break; } if ( i < iLast-1 ) { RetValue = 1; break; } } nextrun: fAdded = 0; // run the SAT solver nConfPrev = pSat->stats.conflicts; status = sat_solver_solve( pSat, NULL, NULL, (ABC_INT64_T)nConfMax, 0, 0, 0 ); if ( fVerbose ) { printf( "Frame %4d : PI =%5d. PO =%5d. AIG =%5d. Var =%7d. Clau =%7d. Conf =%7d. ", f, Aig_ManCiNum(pAigPart), Aig_ManCoNum(pAigPart), Aig_ManNodeNum(pAigPart), nSatVarNum, nClauses, (int)pSat->stats.conflicts-nConfPrev ); ABC_PRT( "Time", Abc_Clock() - clk ); } if ( status == l_Undef ) break; if ( status == l_False ) { RetValue = 1; break; } assert( status == l_True ); // the problem is SAT - add more clauses if ( fVeryVerbose ) { Vec_IntForEachEntry( vState, iReg, i ) { if ( i && (i % Aig_ManRegNum(p)) == 0 ) printf( "\n" ); if ( (i % Aig_ManRegNum(p)) == 0 ) printf( " State %3d : ", i/Aig_ManRegNum(p) ); printf( "%c", (iReg >= 0) ? ('0' + sat_solver_var_value(pSat, iReg)) : 'x' ); } printf( "\n" ); } if ( nFramesMax && f == nFramesMax - 1 ) { // derive counter-example assert( status == l_True ); if ( fGetCex ) { int VarNum, iBit = 0; Abc_Cex_t * pCex = Abc_CexAlloc( Aig_ManRegNum(p)-1, Saig_ManPiNum(p), 1 ); pCex->iFrame = 0; pCex->iPo = 0; Vec_IntForEachEntryStart( vTopVarIds, VarNum, i, 1 ) { if ( VarNum >= 0 && sat_solver_var_value( pSat, VarNum ) ) Abc_InfoSetBit( pCex->pData, iBit ); iBit++; } assert( iBit == pCex->nBits ); Abc_CexFree( p->pSeqModel ); p->pSeqModel = pCex; } break; } if ( fUnique ) { for ( i = 1; i < iLast; i++ ) { for ( k = i+1; k < iLast; k++ ) { if ( !Saig_ManStatesAreEqual( pSat, vState, Aig_ManRegNum(p), i, k ) ) continue; nConstrs++; fAdded = 1; if ( fVeryVerbose ) printf( "Adding constaint for state %2d and state %2d.\n", i, k ); if ( Saig_ManAddUniqueness( pSat, vState, Aig_ManRegNum(p), i, k, &nSatVarNum, &nClauses, fVerbose ) ) break; } if ( k < iLast ) break; } if ( i < iLast ) { RetValue = 1; break; } } if ( fAdded ) goto nextrun; } if ( fVerbose ) { if ( nTimeToStop && Abc_Clock() >= nTimeToStop ) printf( "Timeout (%d sec) was reached during iteration %d.\n", nTimeOut, f+1 ); else if ( status == l_Undef ) printf( "Conflict limit (%d) was reached during iteration %d.\n", nConfMax, f+1 ); else if ( fUnique || fUniqueAll ) printf( "Completed %d interations and added %d uniqueness constraints.\n", f+1, nConstrs ); else printf( "Completed %d interations.\n", f+1 ); } // cleanup sat_solver_delete( pSat ); Aig_ManStop( pAigPart ); Cnf_DataFree( pCnfPart ); Vec_IntFree( vTopVarNums ); Vec_PtrFree( vTop ); Vec_PtrFree( vBot ); Vec_IntFree( vState ); Vec_IntFreeP( &vTopVarIds ); return RetValue; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END