/**CFile**************************************************************** FileName [ivyDsd.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [And-Inverter Graph package.] Synopsis [Disjoint-support decomposition.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - May 11, 2006.] Revision [$Id: ivyDsd.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] ***********************************************************************/ #include "ivy.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// // decomposition types typedef enum { IVY_DEC_PI, // 0: var IVY_DEC_CONST1, // 1: CONST1 IVY_DEC_BUF, // 2: BUF IVY_DEC_AND, // 3: AND IVY_DEC_EXOR, // 4: EXOR IVY_DEC_MUX, // 5: MUX IVY_DEC_MAJ, // 6: MAJ IVY_DEC_PRIME // 7: undecomposable } Ivy_DecType_t; typedef struct Ivy_Dec_t_ Ivy_Dec_t; struct Ivy_Dec_t_ { unsigned Type : 4; // the node type (PI, CONST1, AND, EXOR, MUX, PRIME) unsigned fCompl : 1; // shows if node is complemented (root node only) unsigned nFans : 3; // the number of fanins unsigned Fan0 : 4; // fanin 0 unsigned Fan1 : 4; // fanin 1 unsigned Fan2 : 4; // fanin 2 unsigned Fan3 : 4; // fanin 3 unsigned Fan4 : 4; // fanin 4 unsigned Fan5 : 4; // fanin 5 }; static inline int Ivy_DecToInt( Ivy_Dec_t m ) { union { Ivy_Dec_t x; int y; } v; v.x = m; return v.y; } static inline Ivy_Dec_t Ivy_IntToDec( int m ) { union { Ivy_Dec_t x; int y; } v; v.y = m; return v.x; } static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *pNode = Ivy_IntToDec(0); } //static inline int Ivy_DecToInt( Ivy_Dec_t Node ) { return *((int *)&Node); } //static inline Ivy_Dec_t Ivy_IntToDec( int Node ) { return *((Ivy_Dec_t *)&Node); } //static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *((int *)pNode) = 0; } static unsigned s_Masks[6][2] = { { 0x55555555, 0xAAAAAAAA }, { 0x33333333, 0xCCCCCCCC }, { 0x0F0F0F0F, 0xF0F0F0F0 }, { 0x00FF00FF, 0xFF00FF00 }, { 0x0000FFFF, 0xFFFF0000 }, { 0x00000000, 0xFFFFFFFF } }; static inline int Ivy_TruthWordCountOnes( unsigned uWord ) { uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); return (uWord & 0x0000FFFF) + (uWord>>16); } static inline int Ivy_TruthCofactorIsConst( unsigned uTruth, int Var, int Cof, int Const ) { if ( Const == 0 ) return (uTruth & s_Masks[Var][Cof]) == 0; else return (uTruth & s_Masks[Var][Cof]) == s_Masks[Var][Cof]; } static inline int Ivy_TruthCofactorIsOne( unsigned uTruth, int Var ) { return (uTruth & s_Masks[Var][0]) == 0; } static inline unsigned Ivy_TruthCofactor( unsigned uTruth, int Var ) { unsigned uCofactor = uTruth & s_Masks[Var >> 1][(Var & 1) == 0]; int Shift = (1 << (Var >> 1)); if ( Var & 1 ) return uCofactor | (uCofactor << Shift); return uCofactor | (uCofactor >> Shift); } static inline unsigned Ivy_TruthCofactor2( unsigned uTruth, int Var0, int Var1 ) { return Ivy_TruthCofactor( Ivy_TruthCofactor(uTruth, Var0), Var1 ); } // returns 1 if the truth table depends on this var (var is regular interger var) static inline int Ivy_TruthDepends( unsigned uTruth, int Var ) { return Ivy_TruthCofactor(uTruth, Var << 1) != Ivy_TruthCofactor(uTruth, (Var << 1) | 1); } static inline void Ivy_DecSetVar( Ivy_Dec_t * pNode, int iNum, unsigned Var ) { assert( iNum >= 0 && iNum <= 5 ); switch( iNum ) { case 0: pNode->Fan0 = Var; break; case 1: pNode->Fan1 = Var; break; case 2: pNode->Fan2 = Var; break; case 3: pNode->Fan3 = Var; break; case 4: pNode->Fan4 = Var; break; case 5: pNode->Fan5 = Var; break; } } static inline unsigned Ivy_DecGetVar( Ivy_Dec_t * pNode, int iNum ) { assert( iNum >= 0 && iNum <= 5 ); switch( iNum ) { case 0: return pNode->Fan0; case 1: return pNode->Fan1; case 2: return pNode->Fan2; case 3: return pNode->Fan3; case 4: return pNode->Fan4; case 5: return pNode->Fan5; } return ~0; } static int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree ); static int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree ); //int nTruthDsd; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computes DSD of truth table of 5 variables or less.] Description [Returns 1 if the function is a constant or is fully DSD decomposable using AND/EXOR/MUX gates.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_TruthDsd( unsigned uTruth, Vec_Int_t * vTree ) { Ivy_Dec_t Node; int i, RetValue; // set the PI variables Vec_IntClear( vTree ); for ( i = 0; i < 5; i++ ) Vec_IntPush( vTree, 0 ); // check if it is a constant if ( uTruth == 0 || ~uTruth == 0 ) { Ivy_DecClear( &Node ); Node.Type = IVY_DEC_CONST1; Node.fCompl = (uTruth == 0); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); return 1; } // perform the decomposition RetValue = Ivy_TruthDecompose_rec( uTruth, vTree ); if ( RetValue == -1 ) return 0; // get the topmost node if ( (RetValue >> 1) < 5 ) { // add buffer Ivy_DecClear( &Node ); Node.Type = IVY_DEC_BUF; Node.fCompl = (RetValue & 1); Node.Fan0 = ((RetValue >> 1) << 1); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); } else if ( RetValue & 1 ) { // check if the topmost node has to be complemented Node = Ivy_IntToDec( Vec_IntPop(vTree) ); assert( Node.fCompl == 0 ); Node.fCompl = (RetValue & 1); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); } if ( uTruth != Ivy_TruthDsdCompute(vTree) ) printf( "Verification failed.\n" ); return 1; } /**Function************************************************************* Synopsis [Computes DSD of truth table.] Description [Returns the number of topmost decomposition node.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree ) { Ivy_Dec_t Node; int Supp[5], Vars0[5], Vars1[5], Vars2[5], * pVars; int nSupp, Count0, Count1, Count2, nVars, RetValue, fCompl, i; unsigned uTruthCof, uCof0, uCof1; // get constant confactors Count0 = Count1 = Count2 = nSupp = 0; for ( i = 0; i < 5; i++ ) { if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 0) ) Vars0[Count0++] = (i << 1) | 0; else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 0) ) Vars0[Count0++] = (i << 1) | 1; else if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 1) ) Vars1[Count1++] = (i << 1) | 0; else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 1) ) Vars1[Count1++] = (i << 1) | 1; else { uCof0 = Ivy_TruthCofactor( uTruth, (i << 1) | 1 ); uCof1 = Ivy_TruthCofactor( uTruth, (i << 1) | 0 ); if ( uCof0 == ~uCof1 ) Vars2[Count2++] = (i << 1) | 0; else if ( uCof0 != uCof1 ) Supp[nSupp++] = i; } } assert( Count0 == 0 || Count1 == 0 ); assert( Count0 == 0 || Count2 == 0 ); assert( Count1 == 0 || Count2 == 0 ); // consider the case of a single variable if ( Count0 == 1 && nSupp == 0 ) return Vars0[0]; // consider more complex decompositions if ( Count0 == 0 && Count1 == 0 && Count2 == 0 ) return Ivy_TruthRecognizeMuxMaj( uTruth, Supp, nSupp, vTree ); // extract the nodes Ivy_DecClear( &Node ); if ( Count0 > 0 ) nVars = Count0, pVars = Vars0, Node.Type = IVY_DEC_AND, fCompl = 0; else if ( Count1 > 0 ) nVars = Count1, pVars = Vars1, Node.Type = IVY_DEC_AND, fCompl = 1, uTruth = ~uTruth; else if ( Count2 > 0 ) nVars = Count2, pVars = Vars2, Node.Type = IVY_DEC_EXOR, fCompl = 0; else assert( 0 ); Node.nFans = nVars+(nSupp>0); // compute cofactor uTruthCof = uTruth; for ( i = 0; i < nVars; i++ ) { uTruthCof = Ivy_TruthCofactor( uTruthCof, pVars[i] ); Ivy_DecSetVar( &Node, i, pVars[i] ); } if ( Node.Type == IVY_DEC_EXOR ) fCompl ^= ((Node.nFans & 1) == 0); if ( nSupp > 0 ) { assert( uTruthCof != 0 && ~uTruthCof != 0 ); // call recursively RetValue = Ivy_TruthDecompose_rec( uTruthCof, vTree ); // quit if non-decomposable if ( RetValue == -1 ) return -1; // remove the complement from the child if the node is EXOR if ( Node.Type == IVY_DEC_EXOR && (RetValue & 1) ) { fCompl ^= 1; RetValue ^= 1; } // set the new decomposition Ivy_DecSetVar( &Node, nVars, RetValue ); } else if ( Node.Type == IVY_DEC_EXOR ) fCompl ^= (uTruthCof == 0); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); return ((Vec_IntSize(vTree)-1) << 1) | fCompl; } /**Function************************************************************* Synopsis [Returns a non-negative number if the truth table is a MUX.] Description [If the truth table is a MUX, returns the variable as follows: first, control variable; second, positive cofactor; third, negative cofactor.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree ) { Ivy_Dec_t Node; int i, k, RetValue0, RetValue1; unsigned uCof0, uCof1, Num; char Count[3]; assert( nSupp >= 3 ); // start the node Ivy_DecClear( &Node ); Node.Type = IVY_DEC_MUX; Node.nFans = 3; // try each of the variables for ( i = 0; i < nSupp; i++ ) { // get the cofactors with respect to these variables uCof0 = Ivy_TruthCofactor( uTruth, (pSupp[i] << 1) | 1 ); uCof1 = Ivy_TruthCofactor( uTruth, pSupp[i] << 1 ); // go through all other variables and make sure // each of them belongs to the support of one cofactor for ( k = 0; k < nSupp; k++ ) { if ( k == i ) continue; if ( Ivy_TruthDepends(uCof0, pSupp[k]) && Ivy_TruthDepends(uCof1, pSupp[k]) ) break; } if ( k < nSupp ) continue; // MUX decomposition exists RetValue0 = Ivy_TruthDecompose_rec( uCof0, vTree ); if ( RetValue0 == -1 ) break; RetValue1 = Ivy_TruthDecompose_rec( uCof1, vTree ); if ( RetValue1 == -1 ) break; // both of them exist; create the node Ivy_DecSetVar( &Node, 0, pSupp[i] << 1 ); Ivy_DecSetVar( &Node, 1, RetValue1 ); Ivy_DecSetVar( &Node, 2, RetValue0 ); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); return ((Vec_IntSize(vTree)-1) << 1) | 0; } // check majority gate if ( nSupp > 3 ) return -1; if ( Ivy_TruthWordCountOnes(uTruth) != 16 ) return -1; // this is a majority gate; determine polarity Node.Type = IVY_DEC_MAJ; Count[0] = Count[1] = Count[2] = 0; for ( i = 0; i < 8; i++ ) { Num = 0; for ( k = 0; k < 3; k++ ) if ( i & (1 << k) ) Num |= (1 << pSupp[k]); assert( Num < 32 ); if ( (uTruth & (1 << Num)) == 0 ) continue; for ( k = 0; k < 3; k++ ) if ( i & (1 << k) ) Count[k]++; } assert( Count[0] == 1 || Count[0] == 3 ); assert( Count[1] == 1 || Count[1] == 3 ); assert( Count[2] == 1 || Count[2] == 3 ); Ivy_DecSetVar( &Node, 0, (pSupp[0] << 1)|(Count[0] == 1) ); Ivy_DecSetVar( &Node, 1, (pSupp[1] << 1)|(Count[1] == 1) ); Ivy_DecSetVar( &Node, 2, (pSupp[2] << 1)|(Count[2] == 1) ); Vec_IntPush( vTree, Ivy_DecToInt(Node) ); return ((Vec_IntSize(vTree)-1) << 1) | 0; } /**Function************************************************************* Synopsis [Computes truth table of decomposition tree for verification.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Ivy_TruthDsdCompute_rec( int iNode, Vec_Int_t * vTree ) { unsigned uTruthChild, uTruthTotal; int Var, i; // get the node Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); // compute the node function if ( Node.Type == IVY_DEC_CONST1 ) return s_Masks[5][ !Node.fCompl ]; if ( Node.Type == IVY_DEC_PI ) return s_Masks[iNode][ !Node.fCompl ]; if ( Node.Type == IVY_DEC_BUF ) { uTruthTotal = Ivy_TruthDsdCompute_rec( Node.Fan0 >> 1, vTree ); return Node.fCompl? ~uTruthTotal : uTruthTotal; } if ( Node.Type == IVY_DEC_AND ) { uTruthTotal = s_Masks[5][1]; for ( i = 0; i < (int)Node.nFans; i++ ) { Var = Ivy_DecGetVar( &Node, i ); uTruthChild = Ivy_TruthDsdCompute_rec( Var >> 1, vTree ); uTruthTotal = (Var & 1)? uTruthTotal & ~uTruthChild : uTruthTotal & uTruthChild; } return Node.fCompl? ~uTruthTotal : uTruthTotal; } if ( Node.Type == IVY_DEC_EXOR ) { uTruthTotal = 0; for ( i = 0; i < (int)Node.nFans; i++ ) { Var = Ivy_DecGetVar( &Node, i ); uTruthTotal ^= Ivy_TruthDsdCompute_rec( Var >> 1, vTree ); assert( (Var & 1) == 0 ); } return Node.fCompl? ~uTruthTotal : uTruthTotal; } assert( Node.fCompl == 0 ); if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) { unsigned uTruthChildC, uTruthChild1, uTruthChild0; int VarC, Var1, Var0; VarC = Ivy_DecGetVar( &Node, 0 ); Var1 = Ivy_DecGetVar( &Node, 1 ); Var0 = Ivy_DecGetVar( &Node, 2 ); uTruthChildC = Ivy_TruthDsdCompute_rec( VarC >> 1, vTree ); uTruthChild1 = Ivy_TruthDsdCompute_rec( Var1 >> 1, vTree ); uTruthChild0 = Ivy_TruthDsdCompute_rec( Var0 >> 1, vTree ); assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 ); uTruthChildC = (VarC & 1)? ~uTruthChildC : uTruthChildC; uTruthChild1 = (Var1 & 1)? ~uTruthChild1 : uTruthChild1; uTruthChild0 = (Var0 & 1)? ~uTruthChild0 : uTruthChild0; if ( Node.Type == IVY_DEC_MUX ) return (uTruthChildC & uTruthChild1) | (~uTruthChildC & uTruthChild0); else return (uTruthChildC & uTruthChild1) | (uTruthChildC & uTruthChild0) | (uTruthChild1 & uTruthChild0); } assert( 0 ); return 0; } /**Function************************************************************* Synopsis [Computes truth table of decomposition tree for verification.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Ivy_TruthDsdCompute( Vec_Int_t * vTree ) { return Ivy_TruthDsdCompute_rec( Vec_IntSize(vTree)-1, vTree ); } /**Function************************************************************* Synopsis [Prints the decomposition tree.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthDsdPrint_rec( FILE * pFile, int iNode, Vec_Int_t * vTree ) { int Var, i; // get the node Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); // compute the node function if ( Node.Type == IVY_DEC_CONST1 ) fprintf( pFile, "Const1%s", (Node.fCompl? "\'" : "") ); else if ( Node.Type == IVY_DEC_PI ) fprintf( pFile, "%c%s", 'a' + iNode, (Node.fCompl? "\'" : "") ); else if ( Node.Type == IVY_DEC_BUF ) { Ivy_TruthDsdPrint_rec( pFile, Node.Fan0 >> 1, vTree ); fprintf( pFile, "%s", (Node.fCompl? "\'" : "") ); } else if ( Node.Type == IVY_DEC_AND ) { fprintf( pFile, "AND(" ); for ( i = 0; i < (int)Node.nFans; i++ ) { Var = Ivy_DecGetVar( &Node, i ); Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree ); fprintf( pFile, "%s", (Var & 1)? "\'" : "" ); if ( i != (int)Node.nFans-1 ) fprintf( pFile, "," ); } fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") ); } else if ( Node.Type == IVY_DEC_EXOR ) { fprintf( pFile, "EXOR(" ); for ( i = 0; i < (int)Node.nFans; i++ ) { Var = Ivy_DecGetVar( &Node, i ); Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree ); if ( i != (int)Node.nFans-1 ) fprintf( pFile, "," ); assert( (Var & 1) == 0 ); } fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") ); } else if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) { int VarC, Var1, Var0; assert( Node.fCompl == 0 ); VarC = Ivy_DecGetVar( &Node, 0 ); Var1 = Ivy_DecGetVar( &Node, 1 ); Var0 = Ivy_DecGetVar( &Node, 2 ); fprintf( pFile, "%s", (Node.Type == IVY_DEC_MUX)? "MUX(" : "MAJ(" ); Ivy_TruthDsdPrint_rec( pFile, VarC >> 1, vTree ); fprintf( pFile, "%s", (VarC & 1)? "\'" : "" ); fprintf( pFile, "," ); Ivy_TruthDsdPrint_rec( pFile, Var1 >> 1, vTree ); fprintf( pFile, "%s", (Var1 & 1)? "\'" : "" ); fprintf( pFile, "," ); Ivy_TruthDsdPrint_rec( pFile, Var0 >> 1, vTree ); fprintf( pFile, "%s", (Var0 & 1)? "\'" : "" ); fprintf( pFile, ")" ); } else assert( 0 ); } /**Function************************************************************* Synopsis [Prints the decomposition tree.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthDsdPrint( FILE * pFile, Vec_Int_t * vTree ) { fprintf( pFile, "F = " ); Ivy_TruthDsdPrint_rec( pFile, Vec_IntSize(vTree)-1, vTree ); fprintf( pFile, "\n" ); } /**Function************************************************************* Synopsis [Implement DSD in the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ivy_Obj_t * Ivy_ManDsdConstruct_rec( Ivy_Man_t * p, Vec_Int_t * vFront, int iNode, Vec_Int_t * vTree ) { Ivy_Obj_t * pResult, * pChild, * pNodes[16]; int Var, i; // get the node Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); // compute the node function if ( Node.Type == IVY_DEC_CONST1 ) return Ivy_NotCond( Ivy_ManConst1(p), Node.fCompl ); if ( Node.Type == IVY_DEC_PI ) { pResult = Ivy_ManObj( p, Vec_IntEntry(vFront, iNode) ); return Ivy_NotCond( pResult, Node.fCompl ); } if ( Node.Type == IVY_DEC_BUF ) { pResult = Ivy_ManDsdConstruct_rec( p, vFront, Node.Fan0 >> 1, vTree ); return Ivy_NotCond( pResult, Node.fCompl ); } if ( Node.Type == IVY_DEC_AND || Node.Type == IVY_DEC_EXOR ) { for ( i = 0; i < (int)Node.nFans; i++ ) { Var = Ivy_DecGetVar( &Node, i ); assert( Node.Type == IVY_DEC_AND || (Var & 1) == 0 ); pChild = Ivy_ManDsdConstruct_rec( p, vFront, Var >> 1, vTree ); pChild = Ivy_NotCond( pChild, (Var & 1) ); pNodes[i] = pChild; } // Ivy_MultiEval( pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR ); pResult = Ivy_Multi( p, pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR ); return Ivy_NotCond( pResult, Node.fCompl ); } assert( Node.fCompl == 0 ); if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) { int VarC, Var1, Var0; VarC = Ivy_DecGetVar( &Node, 0 ); Var1 = Ivy_DecGetVar( &Node, 1 ); Var0 = Ivy_DecGetVar( &Node, 2 ); pNodes[0] = Ivy_ManDsdConstruct_rec( p, vFront, VarC >> 1, vTree ); pNodes[1] = Ivy_ManDsdConstruct_rec( p, vFront, Var1 >> 1, vTree ); pNodes[2] = Ivy_ManDsdConstruct_rec( p, vFront, Var0 >> 1, vTree ); assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 ); pNodes[0] = Ivy_NotCond( pNodes[0], (VarC & 1) ); pNodes[1] = Ivy_NotCond( pNodes[1], (Var1 & 1) ); pNodes[2] = Ivy_NotCond( pNodes[2], (Var0 & 1) ); if ( Node.Type == IVY_DEC_MUX ) return Ivy_Mux( p, pNodes[0], pNodes[1], pNodes[2] ); else return Ivy_Maj( p, pNodes[0], pNodes[1], pNodes[2] ); } assert( 0 ); return 0; } /**Function************************************************************* Synopsis [Implement DSD in the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ivy_Obj_t * Ivy_ManDsdConstruct( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vTree ) { int Entry, i; // implement latches on the frontier (TEMPORARY!!!) Vec_IntForEachEntry( vFront, Entry, i ) Vec_IntWriteEntry( vFront, i, Ivy_LeafId(Entry) ); // recursively construct the tree return Ivy_ManDsdConstruct_rec( p, vFront, Vec_IntSize(vTree)-1, vTree ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthDsdComputePrint( unsigned uTruth ) { static Vec_Int_t * vTree = NULL; if ( vTree == NULL ) vTree = Vec_IntAlloc( 12 ); if ( Ivy_TruthDsd( uTruth, vTree ) ) Ivy_TruthDsdPrint( stdout, vTree ); else printf( "Undecomposable\n" ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthTestOne( unsigned uTruth ) { static int Counter = 0; static Vec_Int_t * vTree = NULL; // decompose if ( vTree == NULL ) vTree = Vec_IntAlloc( 12 ); if ( !Ivy_TruthDsd( uTruth, vTree ) ) { // printf( "Undecomposable\n" ); } else { // nTruthDsd++; printf( "%5d : ", Counter++ ); Extra_PrintBinary( stdout, &uTruth, 32 ); printf( " " ); Ivy_TruthDsdPrint( stdout, vTree ); if ( uTruth != Ivy_TruthDsdCompute(vTree) ) printf( "Verification failed.\n" ); } // Vec_IntFree( vTree ); } #if 0 /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthTest() { FILE * pFile; char Buffer[100]; unsigned uTruth; int i; pFile = fopen( "npn4.txt", "r" ); for ( i = 0; i < 222; i++ ) // pFile = fopen( "npn5.txt", "r" ); // for ( i = 0; i < 616126; i++ ) { fscanf( pFile, "%s", Buffer ); Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); // Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 ); uTruth |= (uTruth << 16); // uTruth = ~uTruth; Ivy_TruthTestOne( uTruth ); } fclose( pFile ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthTest3() { FILE * pFile; char Buffer[100]; unsigned uTruth; int i; pFile = fopen( "npn3.txt", "r" ); for ( i = 0; i < 14; i++ ) { fscanf( pFile, "%s", Buffer ); Extra_ReadHexadecimal( &uTruth, Buffer+2, 3 ); uTruth = uTruth | (uTruth << 8) | (uTruth << 16) | (uTruth << 24); Ivy_TruthTestOne( uTruth ); } fclose( pFile ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_TruthTest5() { FILE * pFile; char Buffer[100]; unsigned uTruth; int i; // pFile = fopen( "npn4.txt", "r" ); // for ( i = 0; i < 222; i++ ) pFile = fopen( "npn5.txt", "r" ); for ( i = 0; i < 616126; i++ ) { fscanf( pFile, "%s", Buffer ); // Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 ); // uTruth |= (uTruth << 16); // uTruth = ~uTruth; Ivy_TruthTestOne( uTruth ); } fclose( pFile ); } #endif //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END