/**CFile**************************************************************** FileName [ivyDfs.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [And-Inverter Graph package.] Synopsis [DFS collection procedures.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - May 11, 2006.] Revision [$Id: ivyDfs.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] ***********************************************************************/ #include "ivy.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Collects nodes in the DFS order.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_ManDfs_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Int_t * vNodes ) { if ( Ivy_ObjIsMarkA(pObj) ) return; Ivy_ObjSetMarkA(pObj); if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) ) { if ( p->pHaig == NULL && pObj->pEquiv ) Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes ); return; } //printf( "visiting node %d\n", pObj->Id ); /* if ( pObj->Id == 87 || pObj->Id == 90 ) { int y = 0; } */ assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) ); Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); if ( !Ivy_ObjIsBuf(pObj) ) Ivy_ManDfs_rec( p, Ivy_ObjFanin1(pObj), vNodes ); if ( p->pHaig == NULL && pObj->pEquiv ) Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes ); Vec_IntPush( vNodes, pObj->Id ); //printf( "adding node %d with fanins %d and %d and equiv %d (refs = %d)\n", // pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id, // pObj->pEquiv? Ivy_Regular(pObj->pEquiv)->Id: -1, Ivy_ObjRefs(pObj) ); } /**Function************************************************************* Synopsis [Collects AND/EXOR nodes in the DFS order from CIs to COs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Ivy_ManDfs( Ivy_Man_t * p ) { Vec_Int_t * vNodes; Ivy_Obj_t * pObj; int i; assert( Ivy_ManLatchNum(p) == 0 ); // make sure the nodes are not marked Ivy_ManForEachObj( p, pObj, i ) assert( !pObj->fMarkA && !pObj->fMarkB ); // collect the nodes vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) ); Ivy_ManForEachPo( p, pObj, i ) Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); // unmark the collected nodes // Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) // Ivy_ObjClearMarkA(pObj); Ivy_ManForEachObj( p, pObj, i ) Ivy_ObjClearMarkA(pObj); // make sure network does not have dangling nodes assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) ); return vNodes; } /**Function************************************************************* Synopsis [Collects AND/EXOR nodes in the DFS order from CIs to COs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Ivy_ManDfsSeq( Ivy_Man_t * p, Vec_Int_t ** pvLatches ) { Vec_Int_t * vNodes, * vLatches; Ivy_Obj_t * pObj; int i; // assert( Ivy_ManLatchNum(p) > 0 ); // make sure the nodes are not marked Ivy_ManForEachObj( p, pObj, i ) assert( !pObj->fMarkA && !pObj->fMarkB ); // collect the latches vLatches = Vec_IntAlloc( Ivy_ManLatchNum(p) ); Ivy_ManForEachLatch( p, pObj, i ) Vec_IntPush( vLatches, pObj->Id ); // collect the nodes vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) ); Ivy_ManForEachPo( p, pObj, i ) Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); // unmark the collected nodes // Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) // Ivy_ObjClearMarkA(pObj); Ivy_ManForEachObj( p, pObj, i ) Ivy_ObjClearMarkA(pObj); // make sure network does not have dangling nodes // assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) ); // temporary!!! if ( pvLatches == NULL ) Vec_IntFree( vLatches ); else *pvLatches = vLatches; return vNodes; } /**Function************************************************************* Synopsis [Collects nodes in the cone.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_ManCollectCone_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vCone ) { if ( pObj->fMarkA ) return; if ( Ivy_ObjIsBuf(pObj) ) { Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone ); Vec_PtrPush( vCone, pObj ); return; } assert( Ivy_ObjIsNode(pObj) ); Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone ); Ivy_ManCollectCone_rec( Ivy_ObjFanin1(pObj), vCone ); Vec_PtrPushUnique( vCone, pObj ); } /**Function************************************************************* Synopsis [Collects nodes in the cone.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_ManCollectCone( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vCone ) { Ivy_Obj_t * pTemp; int i; assert( !Ivy_IsComplement(pObj) ); assert( Ivy_ObjIsNode(pObj) ); // mark the nodes Vec_PtrForEachEntry( Ivy_Obj_t *, vFront, pTemp, i ) Ivy_Regular(pTemp)->fMarkA = 1; assert( pObj->fMarkA == 0 ); // collect the cone Vec_PtrClear( vCone ); Ivy_ManCollectCone_rec( pObj, vCone ); // unmark the nodes Vec_PtrForEachEntry( Ivy_Obj_t *, vFront, pTemp, i ) Ivy_Regular(pTemp)->fMarkA = 0; } /**Function************************************************************* Synopsis [Returns the nodes by level.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Vec_t * Ivy_ManLevelize( Ivy_Man_t * p ) { Vec_Vec_t * vNodes; Ivy_Obj_t * pObj; int i; vNodes = Vec_VecAlloc( 100 ); Ivy_ManForEachObj( p, pObj, i ) { assert( !Ivy_ObjIsBuf(pObj) ); if ( Ivy_ObjIsNode(pObj) ) Vec_VecPush( vNodes, pObj->Level, pObj ); } return vNodes; } /**Function************************************************************* Synopsis [Computes required levels for each node.] Description [Assumes topological ordering of the nodes.] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Ivy_ManRequiredLevels( Ivy_Man_t * p ) { Ivy_Obj_t * pObj; Vec_Int_t * vLevelsR; Vec_Vec_t * vNodes; int i, k, Level, LevelMax; assert( p->vRequired == NULL ); // start the required times vLevelsR = Vec_IntStart( Ivy_ManObjIdMax(p) + 1 ); // iterate through the nodes in the reverse order vNodes = Ivy_ManLevelize( p ); Vec_VecForEachEntryReverseReverse( Ivy_Obj_t *, vNodes, pObj, i, k ) { Level = Vec_IntEntry( vLevelsR, pObj->Id ) + 1 + Ivy_ObjIsExor(pObj); if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId0(pObj) ) < Level ) Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId0(pObj), Level ); if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId1(pObj) ) < Level ) Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId1(pObj), Level ); } Vec_VecFree( vNodes ); // convert it into the required times LevelMax = Ivy_ManLevels( p ); //printf( "max %5d\n",LevelMax ); Ivy_ManForEachObj( p, pObj, i ) { Level = Vec_IntEntry( vLevelsR, pObj->Id ); Vec_IntWriteEntry( vLevelsR, pObj->Id, LevelMax - Level ); //printf( "%5d : %5d %5d\n", pObj->Id, Level, LevelMax - Level ); } p->vRequired = vLevelsR; return vLevelsR; } /**Function************************************************************* Synopsis [Recursively detects combinational loops.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_ManIsAcyclic_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj ) { // skip the node if it is already visited if ( Ivy_ObjIsTravIdPrevious(p, pObj) ) return 1; // check if the node is part of the combinational loop if ( Ivy_ObjIsTravIdCurrent(p, pObj) ) { fprintf( stdout, "Manager contains combinational loop!\n" ); fprintf( stdout, "Node \"%d\" is encountered twice on the following path:\n", Ivy_ObjId(pObj) ); fprintf( stdout, " %d", Ivy_ObjId(pObj) ); return 0; } // mark this node as a node on the current path Ivy_ObjSetTravIdCurrent( p, pObj ); // explore equivalent nodes if pObj is the main node if ( p->pHaig == NULL && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 ) { Ivy_Obj_t * pTemp; assert( !Ivy_IsComplement(pObj->pEquiv) ); for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) { // traverse the fanin's cone searching for the loop if ( !Ivy_ManIsAcyclic_rec(p, pTemp) ) { // return as soon as the loop is detected fprintf( stdout, " -> (%d", Ivy_ObjId(pObj) ); for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) fprintf( stdout, " %d", Ivy_ObjId(pTemp) ); fprintf( stdout, ")" ); return 0; } } } // quite if it is a CI node if ( Ivy_ObjIsCi(pObj) || Ivy_ObjIsConst1(pObj) ) { // mark this node as a visited node Ivy_ObjSetTravIdPrevious( p, pObj ); return 1; } assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); // traverse the fanin's cone searching for the loop if ( !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj)) ) { // return as soon as the loop is detected fprintf( stdout, " -> %d", Ivy_ObjId(pObj) ); return 0; } // traverse the fanin's cone searching for the loop if ( Ivy_ObjIsNode(pObj) && !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin1(pObj)) ) { // return as soon as the loop is detected fprintf( stdout, " -> %d", Ivy_ObjId(pObj) ); return 0; } // mark this node as a visited node Ivy_ObjSetTravIdPrevious( p, pObj ); return 1; } /**Function************************************************************* Synopsis [Detects combinational loops.] Description [This procedure is based on the idea suggested by Donald Chai. As we traverse the network and visit the nodes, we need to distinquish three types of nodes: (1) those that are visited for the first time, (2) those that have been visited in this traversal but are currently not on the traversal path, (3) those that have been visited and are currently on the travesal path. When the node of type (3) is encountered, it means that there is a combinational loop. To mark the three types of nodes, two new values of the traversal IDs are used.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_ManIsAcyclic( Ivy_Man_t * p ) { Ivy_Obj_t * pObj; int fAcyclic, i; // set the traversal ID for this DFS ordering Ivy_ManIncrementTravId( p ); Ivy_ManIncrementTravId( p ); // pObj->TravId == pNet->nTravIds means "pObj is on the path" // pObj->TravId == pNet->nTravIds - 1 means "pObj is visited but is not on the path" // pObj->TravId < pNet->nTravIds - 1 means "pObj is not visited" // traverse the network to detect cycles fAcyclic = 1; Ivy_ManForEachCo( p, pObj, i ) { // traverse the output logic cone if ( (fAcyclic = Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj))) ) continue; // stop as soon as the first loop is detected fprintf( stdout, " (cone of %s \"%d\")\n", Ivy_ObjIsLatch(pObj)? "latch" : "PO", Ivy_ObjId(pObj) ); break; } return fAcyclic; } /**Function************************************************************* Synopsis [Sets the levels of the nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_ManSetLevels_rec( Ivy_Obj_t * pObj, int fHaig ) { // quit if the node is visited if ( Ivy_ObjIsMarkA(pObj) ) return pObj->Level; Ivy_ObjSetMarkA(pObj); // quit if this is a CI if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) ) return 0; assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) ); // get levels of the fanins Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig ); if ( !Ivy_ObjIsBuf(pObj) ) Ivy_ManSetLevels_rec( Ivy_ObjFanin1(pObj), fHaig ); // get level of the node if ( Ivy_ObjIsBuf(pObj) ) pObj->Level = 1 + Ivy_ObjFanin0(pObj)->Level; else if ( Ivy_ObjIsNode(pObj) ) pObj->Level = Ivy_ObjLevelNew( pObj ); else assert( 0 ); // get level of other choices if ( fHaig && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 ) { Ivy_Obj_t * pTemp; unsigned LevelMax = pObj->Level; for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) { Ivy_ManSetLevels_rec( pTemp, fHaig ); LevelMax = IVY_MAX( LevelMax, pTemp->Level ); } // get this level pObj->Level = LevelMax; for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) pTemp->Level = LevelMax; } return pObj->Level; } /**Function************************************************************* Synopsis [Sets the levels of the nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_ManSetLevels( Ivy_Man_t * p, int fHaig ) { Ivy_Obj_t * pObj; int i, LevelMax; // check if CIs have choices if ( fHaig ) { Ivy_ManForEachCi( p, pObj, i ) if ( pObj->pEquiv ) printf( "CI %d has a choice, which will not be visualized.\n", pObj->Id ); } // clean the levels Ivy_ManForEachObj( p, pObj, i ) pObj->Level = 0; // compute the levels LevelMax = 0; Ivy_ManForEachCo( p, pObj, i ) { Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig ); LevelMax = IVY_MAX( LevelMax, (int)Ivy_ObjFanin0(pObj)->Level ); } // compute levels of nodes without fanout Ivy_ManForEachObj( p, pObj, i ) if ( (Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj)) && Ivy_ObjRefs(pObj) == 0 ) { Ivy_ManSetLevels_rec( pObj, fHaig ); LevelMax = IVY_MAX( LevelMax, (int)pObj->Level ); } // clean the marks Ivy_ManForEachObj( p, pObj, i ) Ivy_ObjClearMarkA(pObj); return LevelMax; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END