/**CFile**************************************************************** FileName [giaNf.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Standard-cell mapper.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaNf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include #include "gia.h" #include "misc/st/st.h" #include "map/mio/mio.h" #include "misc/util/utilTruth.h" #include "misc/extra/extra.h" #include "base/main/main.h" #include "misc/vec/vecMem.h" #include "misc/vec/vecWec.h" #include "opt/dau/dau.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define PF_LEAF_MAX 6 #define PF_CUT_MAX 32 #define PF_NO_LEAF 31 #define PF_INFINITY FLT_MAX typedef struct Pf_Cut_t_ Pf_Cut_t; struct Pf_Cut_t_ { word Sign; // signature int Delay; // delay float Flow; // flow unsigned iFunc : 26; // function unsigned Useless : 1; // function unsigned nLeaves : 5; // leaf number (PF_NO_LEAF) int pLeaves[PF_LEAF_MAX+1]; // leaves }; typedef struct Pf_Mat_t_ Pf_Mat_t; struct Pf_Mat_t_ { unsigned fCompl : 8; // complemented unsigned Phase : 6; // match phase unsigned Perm : 18; // match permutation }; typedef struct Pf_Obj_t_ Pf_Obj_t; struct Pf_Obj_t_ { float Area; unsigned Gate : 7; // gate unsigned nLeaves : 3; // fanin count unsigned nRefs : 22; // ref count int pLeaves[6]; // leaf literals }; typedef struct Pf_Man_t_ Pf_Man_t; struct Pf_Man_t_ { // user data Gia_Man_t * pGia; // derived manager Jf_Par_t * pPars; // parameters // matching Vec_Mem_t * vTtMem; // truth tables Vec_Wec_t * vTt2Match; // matches for truth tables Mio_Cell_t * pCells; // library gates int nCells; // library gate count // cut data Pf_Obj_t * pPfObjs; // best cuts Vec_Ptr_t vPages; // cut memory Vec_Int_t vCutSets; // cut offsets Vec_Flt_t vCutFlows; // temporary cut area Vec_Int_t vCutDelays; // temporary cut delay int iCur; // current position int Iter; // mapping iterations int fUseEla; // use exact area int nInvs; // the inverter count float InvDelay; // inverter delay float InvArea; // inverter area // statistics abctime clkStart; // starting time double CutCount[6]; // cut counts int nCutUseAll; // objects with useful cuts }; static inline int Pf_Mat2Int( Pf_Mat_t Mat ) { union { int x; Pf_Mat_t y; } v; v.y = Mat; return v.x; } static inline Pf_Mat_t Pf_Int2Mat( int Int ) { union { int x; Pf_Mat_t y; } v; v.x = Int; return v.y; } static inline Pf_Obj_t * Pf_ManObj( Pf_Man_t * p, int i ) { return p->pPfObjs + i; } static inline Mio_Cell_t* Pf_ManCell( Pf_Man_t * p, int i ) { return p->pCells + i; } static inline int * Pf_ManCutSet( Pf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); } static inline int Pf_ObjCutSetId( Pf_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); } static inline int * Pf_ObjCutSet( Pf_Man_t * p, int i ) { return Pf_ManCutSet(p, Pf_ObjCutSetId(p, i)); } static inline int Pf_ObjHasCuts( Pf_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); } static inline int Pf_ObjCutUseless( Pf_Man_t * p, int TruthId ) { return (int)(TruthId >= Vec_WecSize(p->vTt2Match)); } static inline float Pf_ObjCutFlow( Pf_Man_t * p, int i ) { return Vec_FltEntry(&p->vCutFlows, i); } static inline int Pf_ObjCutDelay( Pf_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); } static inline void Pf_ObjSetCutFlow( Pf_Man_t * p, int i, float a ) { Vec_FltWriteEntry(&p->vCutFlows, i, a); } static inline void Pf_ObjSetCutDelay( Pf_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); } static inline int Pf_CutSize( int * pCut ) { return pCut[0] & PF_NO_LEAF; } static inline int Pf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); } static inline int * Pf_CutLeaves( int * pCut ) { return pCut + 1; } static inline int Pf_CutSetBoth( int n, int f ) { return n | (f << 5); } static inline int Pf_CutIsTriv( int * pCut, int i ) { return Pf_CutSize(pCut) == 1 && pCut[1] == i; } static inline int Pf_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; } static inline int * Pf_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; } static inline int Pf_CutConfLit( int Conf, int i ) { return 15 & (Conf >> (i << 2)); } static inline int Pf_CutConfVar( int Conf, int i ) { return Abc_Lit2Var( Pf_CutConfLit(Conf, i) ); } static inline int Pf_CutConfC( int Conf, int i ) { return Abc_LitIsCompl( Pf_CutConfLit(Conf, i) ); } #define Pf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Pf_CutSize(pCut) + 1 ) #define Pf_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ ) #define Pf_CutForEachLit( pCut, Conf, iLit, i ) for ( i = 0; i < Pf_CutSize(pCut) && (iLit = Abc_Lit2LitV(Pf_CutLeaves(pCut), Pf_CutConfLit(Conf, i))); i++ ) #define Pf_CutForEachVar( pCut, Conf, iVar, c, i ) for ( i = 0; i < Pf_CutSize(pCut) && (iVar = Pf_CutLeaves(pCut)[Pf_CutConfVar(Conf, i)]) && ((c = Pf_CutConfC(Conf, i)), 1); i++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Pf_StoCreateGateAdd( Pf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId ) { Vec_Int_t * vArray; Pf_Mat_t Mat = Pf_Int2Mat(0); int i, GateId, Entry, fCompl = (int)(uTruth & 1); word uFunc = fCompl ? ~uTruth : uTruth; int iFunc = Vec_MemHashInsert( pMan->vTtMem, &uFunc ); if ( iFunc == Vec_WecSize(pMan->vTt2Match) ) Vec_WecPushLevel( pMan->vTt2Match ); vArray = Vec_WecEntry( pMan->vTt2Match, iFunc ); Mat.fCompl = fCompl; assert( nFans < 7 ); for ( i = 0; i < nFans; i++ ) { Mat.Perm |= (unsigned)(Abc_Lit2Var(pFans[i]) << (3*i)); Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << i); } // check if the same one exists Vec_IntForEachEntryDouble( vArray, GateId, Entry, i ) if ( GateId == CellId && Pf_Int2Mat(Entry).Phase == Mat.Phase ) break; if ( i == Vec_IntSize(vArray) ) { Vec_IntPush( vArray, CellId ); Vec_IntPush( vArray, Pf_Mat2Int(Mat) ); } } void Pf_StoCreateGate( Pf_Man_t * pMan, Mio_Cell_t * pCell, int ** pComp, int ** pPerm, int * pnPerms ) { int Perm[PF_LEAF_MAX], * Perm1, * Perm2; int nPerms = pnPerms[pCell->nFanins]; int nMints = (1 << pCell->nFanins); word tCur, tTemp1, tTemp2; int i, p, c; for ( i = 0; i < (int)pCell->nFanins; i++ ) Perm[i] = Abc_Var2Lit( i, 0 ); tCur = tTemp1 = pCell->uTruth; for ( p = 0; p < nPerms; p++ ) { tTemp2 = tCur; for ( c = 0; c < nMints; c++ ) { Pf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id ); // update tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] ); Perm1 = Perm + pComp[pCell->nFanins][c]; *Perm1 = Abc_LitNot( *Perm1 ); } assert( tTemp2 == tCur ); // update tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] ); Perm1 = Perm + pPerm[pCell->nFanins][p]; Perm2 = Perm1 + 1; ABC_SWAP( int, *Perm1, *Perm2 ); } assert( tTemp1 == tCur ); } void Pf_StoDeriveMatches( Pf_Man_t * p, int fVerbose ) { // abctime clk = Abc_Clock(); int * pComp[7]; int * pPerm[7]; int nPerms[7], i; for ( i = 2; i <= 6; i++ ) pComp[i] = Extra_GreyCodeSchedule( i ); for ( i = 2; i <= 6; i++ ) pPerm[i] = Extra_PermSchedule( i ); for ( i = 2; i <= 6; i++ ) nPerms[i] = Extra_Factorial( i ); p->pCells = Mio_CollectRootsNewDefault( 6, &p->nCells, fVerbose ); for ( i = 4; i < p->nCells; i++ ) Pf_StoCreateGate( p, p->pCells + i, pComp, pPerm, nPerms ); for ( i = 2; i <= 6; i++ ) ABC_FREE( pComp[i] ); for ( i = 2; i <= 6; i++ ) ABC_FREE( pPerm[i] ); // Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } void Pf_StoPrintOne( Pf_Man_t * p, int Count, int t, int i, int GateId, Pf_Mat_t Mat ) { Mio_Cell_t * pC = p->pCells + GateId; word * pTruth = Vec_MemReadEntry(p->vTtMem, t); int k, nSuppSize = Abc_TtSupportSize(pTruth, 6); printf( "%6d : ", Count ); printf( "%6d : ", t ); printf( "%6d : ", i ); printf( "Gate %16s ", pC->pName ); printf( "Area =%8.2f ", pC->Area ); printf( "In = %d ", pC->nFanins ); if ( Mat.fCompl ) printf( " compl " ); else printf( " " ); for ( k = 0; k < (int)pC->nFanins; k++ ) { int fComplF = (Mat.Phase >> k) & 1; int iFanin = (Mat.Perm >> (3*k)) & 7; printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') ); } printf( " " ); Dau_DsdPrintFromTruth( pTruth, nSuppSize ); } void Pf_StoPrint( Pf_Man_t * p, int fVerbose ) { int t, i, GateId, Entry, Count = 0; for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ ) { Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t ); Vec_IntForEachEntryDouble( vArr, GateId, Entry, i ) { Count++; if ( !fVerbose ) continue; if ( t < 10 ) Pf_StoPrintOne( p, Count, t, i/2, GateId, Pf_Int2Mat(Entry) ); } } printf( "Gates = %d. Truths = %d. Matches = %d.\n", p->nCells, Vec_MemEntryNum(p->vTtMem), Count ); } /* void Pf_ManPrepareLibraryTest() { int fVerbose = 0; abctime clk = Abc_Clock(); Pf_Man_t * p; p = Pf_StoCreate( NULL, NULL, fVerbose ); Pf_StoPrint( p, fVerbose ); Pf_StoDelete(p); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } */ /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Pf_Man_t * Pf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars ) { extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs ); Pf_Man_t * p; Vec_Int_t * vFlowRefs; assert( pPars->nCutNum > 1 && pPars->nCutNum <= PF_CUT_MAX ); assert( pPars->nLutSize > 1 && pPars->nLutSize <= PF_LEAF_MAX ); ABC_FREE( pGia->pRefs ); Vec_IntFreeP( &pGia->vCellMapping ); if ( Gia_ManHasChoices(pGia) ) Gia_ManSetPhase(pGia); // create references ABC_FREE( pGia->pRefs ); vFlowRefs = Vec_IntAlloc(0); Mf_ManSetFlowRefs( pGia, vFlowRefs ); pGia->pRefs= Vec_IntReleaseArray(vFlowRefs); Vec_IntFree(vFlowRefs); // create p = ABC_CALLOC( Pf_Man_t, 1 ); p->clkStart = Abc_Clock(); p->pGia = pGia; p->pPars = pPars; p->pPfObjs = ABC_CALLOC( Pf_Obj_t, Gia_ManObjNum(pGia) ); p->iCur = 2; // other Vec_PtrGrow( &p->vPages, 256 ); // cut memory Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay // matching p->vTtMem = Vec_MemAllocForTT( 6, 0 ); p->vTt2Match = Vec_WecAlloc( 1000 ); Vec_WecPushLevel( p->vTt2Match ); Vec_WecPushLevel( p->vTt2Match ); assert( Vec_WecSize(p->vTt2Match) == Vec_MemEntryNum(p->vTtMem) ); Pf_StoDeriveMatches( p, 0 );//pPars->fVerbose ); p->InvDelay = p->pCells[3].Delays[0]; p->InvArea = p->pCells[3].Area; //Pf_ObjMatchD(p, 0, 0)->Gate = 0; //Pf_ObjMatchD(p, 0, 1)->Gate = 1; // prepare cuts return p; } void Pf_StoDelete( Pf_Man_t * p ) { Vec_PtrFreeData( &p->vPages ); ABC_FREE( p->vPages.pArray ); ABC_FREE( p->vCutSets.pArray ); ABC_FREE( p->vCutFlows.pArray ); ABC_FREE( p->vCutDelays.pArray ); ABC_FREE( p->pPfObjs ); // matching Vec_WecFree( p->vTt2Match ); Vec_MemHashFree( p->vTtMem ); Vec_MemFree( p->vTtMem ); ABC_FREE( p->pCells ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Pf_CutComputeTruth6( Pf_Man_t * p, Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, int fCompl0, int fCompl1, Pf_Cut_t * pCutR, int fIsXor ) { // extern int Pf_ManTruthCanonicize( word * t, int nVars ); int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = fIsXor ? t0 ^ t1 : t0 & t1; if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); pCutR->Useless = Pf_ObjCutUseless( p, truthId ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Pf_CutComputeTruthMux6( Pf_Man_t * p, Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Pf_Cut_t * pCutR ) { int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = (tC & t1) | (~tC & t0); if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); pCutR->Useless = Pf_ObjCutUseless( p, truthId ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Pf_CutCountBits( word i ) { i = i - ((i >> 1) & 0x5555555555555555); i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333); i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F); return (i*(0x0101010101010101))>>56; } static inline word Pf_CutGetSign( int * pLeaves, int nLeaves ) { word Sign = 0; int i; for ( i = 0; i < nLeaves; i++ ) Sign |= ((word)1) << (pLeaves[i] & 0x3F); return Sign; } static inline int Pf_CutCreateUnit( Pf_Cut_t * p, int i ) { p->Delay = 0; p->Flow = 0; p->iFunc = 2; p->nLeaves = 1; p->pLeaves[0] = i; p->Sign = ((word)1) << (i & 0x3F); return 1; } static inline void Pf_Cutprintf( Pf_Man_t * p, Pf_Cut_t * pCut ) { int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); printf( "%d {", pCut->nLeaves ); for ( i = 0; i < (int)pCut->nLeaves; i++ ) printf( " %*d", nDigits, pCut->pLeaves[i] ); for ( ; i < (int)p->pPars->nLutSize; i++ ) printf( " %*s", nDigits, " " ); printf( " } Useless = %d. D = %4d A = %9.4f F = %6d ", pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc ); if ( p->vTtMem ) Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves ); else printf( "\n" ); } static inline int Pf_ManPrepareCuts( Pf_Cut_t * pCuts, Pf_Man_t * p, int iObj, int fAddUnit ) { if ( Pf_ObjHasCuts(p, iObj) ) { Pf_Cut_t * pMfCut = pCuts; int i, * pCut, * pList = Pf_ObjCutSet(p, iObj); Pf_SetForEachCut( pList, pCut, i ) { pMfCut->Delay = 0; pMfCut->Flow = 0; pMfCut->iFunc = Pf_CutFunc( pCut ); pMfCut->nLeaves = Pf_CutSize( pCut ); pMfCut->Sign = Pf_CutGetSign( pCut+1, Pf_CutSize(pCut) ); pMfCut->Useless = Pf_ObjCutUseless( p, Abc_Lit2Var(pMfCut->iFunc) ); memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Pf_CutSize(pCut) ); pMfCut++; } if ( fAddUnit && pCuts->nLeaves > 1 ) return pList[0] + Pf_CutCreateUnit( pMfCut, iObj ); return pList[0]; } return Pf_CutCreateUnit( pCuts, iObj ); } static inline int Pf_ManSaveCuts( Pf_Man_t * p, Pf_Cut_t ** pCuts, int nCuts, int fUseful ) { int i, * pPlace, iCur, nInts = 1, nCutsNew = 0; for ( i = 0; i < nCuts; i++ ) if ( !fUseful || !pCuts[i]->Useless ) nInts += pCuts[i]->nLeaves + 1, nCutsNew++; if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF ) p->iCur = ((p->iCur >> 16) + 1) << 16; if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) ) Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) ); iCur = p->iCur; p->iCur += nInts; pPlace = Pf_ManCutSet( p, iCur ); *pPlace++ = nCutsNew; for ( i = 0; i < nCuts; i++ ) if ( !fUseful || !pCuts[i]->Useless ) { *pPlace++ = Pf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc ); memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves ); pPlace += pCuts[i]->nLeaves; } return iCur; } static inline int Pf_ManCountUseful( Pf_Cut_t ** pCuts, int nCuts ) { int i, Count = 0; for ( i = 0; i < nCuts; i++ ) Count += !pCuts[i]->Useless; return Count; } static inline int Pf_ManCountMatches( Pf_Man_t * p, Pf_Cut_t ** pCuts, int nCuts ) { int i, Count = 0; for ( i = 0; i < nCuts; i++ ) if ( !pCuts[i]->Useless ) Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2; return Count; } /**Function************************************************************* Synopsis [Check correctness of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Pf_CutCheck( Pf_Cut_t * pBase, Pf_Cut_t * pCut ) // check if pCut is contained in pBase { int nSizeB = pBase->nLeaves; int nSizeC = pCut->nLeaves; int i, * pB = pBase->pLeaves; int k, * pC = pCut->pLeaves; for ( i = 0; i < nSizeC; i++ ) { for ( k = 0; k < nSizeB; k++ ) if ( pC[i] == pB[k] ) break; if ( k == nSizeB ) return 0; } return 1; } static inline int Pf_SetCheckArray( Pf_Cut_t ** ppCuts, int nCuts ) { Pf_Cut_t * pCut0, * pCut1; int i, k, m, n, Value; assert( nCuts > 0 ); for ( i = 0; i < nCuts; i++ ) { pCut0 = ppCuts[i]; assert( pCut0->nLeaves <= PF_LEAF_MAX ); assert( pCut0->Sign == Pf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) ); // check duplicates for ( m = 0; m < (int)pCut0->nLeaves; m++ ) for ( n = m + 1; n < (int)pCut0->nLeaves; n++ ) assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] ); // check pairs for ( k = 0; k < nCuts; k++ ) { pCut1 = ppCuts[k]; if ( pCut0 == pCut1 ) continue; // check containments Value = Pf_CutCheck( pCut0, pCut1 ); assert( Value == 0 ); } } return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Pf_CutMergeOrder( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCut, int nLutSize ) { int nSize0 = pCut0->nLeaves; int nSize1 = pCut1->nLeaves; int i, * pC0 = pCut0->pLeaves; int k, * pC1 = pCut1->pLeaves; int c, * pC = pCut->pLeaves; // the case of the largest cut sizes if ( nSize0 == nLutSize && nSize1 == nLutSize ) { for ( i = 0; i < nSize0; i++ ) { if ( pC0[i] != pC1[i] ) return 0; pC[i] = pC0[i]; } pCut->nLeaves = nLutSize; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } // compare two cuts with different numbers i = k = c = 0; if ( nSize0 == 0 ) goto FlushCut1; if ( nSize1 == 0 ) goto FlushCut0; while ( 1 ) { if ( c == nLutSize ) return 0; if ( pC0[i] < pC1[k] ) { pC[c++] = pC0[i++]; if ( i >= nSize0 ) goto FlushCut1; } else if ( pC0[i] > pC1[k] ) { pC[c++] = pC1[k++]; if ( k >= nSize1 ) goto FlushCut0; } else { pC[c++] = pC0[i++]; k++; if ( i >= nSize0 ) goto FlushCut1; if ( k >= nSize1 ) goto FlushCut0; } } FlushCut0: if ( c + nSize0 > nLutSize + i ) return 0; while ( i < nSize0 ) pC[c++] = pC0[i++]; pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; FlushCut1: if ( c + nSize1 > nLutSize + k ) return 0; while ( k < nSize1 ) pC[c++] = pC1[k++]; pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Pf_CutMergeOrderMux( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1, Pf_Cut_t * pCut2, Pf_Cut_t * pCut, int nLutSize ) { int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves; int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves; int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves; int xMin, c = 0, * pC = pCut->pLeaves; while ( 1 ) { x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0]; x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1]; x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2]; xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 ); if ( xMin == ABC_INFINITY ) break; if ( c == nLutSize ) return 0; pC[c++] = xMin; if (x0 == xMin) i0++; if (x1 == xMin) i1++; if (x2 == xMin) i2++; } pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign; return 1; } static inline int Pf_SetCutIsContainedOrder( Pf_Cut_t * pBase, Pf_Cut_t * pCut ) // check if pCut is contained in pBase { int i, nSizeB = pBase->nLeaves; int k, nSizeC = pCut->nLeaves; if ( nSizeB == nSizeC ) { for ( i = 0; i < nSizeB; i++ ) if ( pBase->pLeaves[i] != pCut->pLeaves[i] ) return 0; return 1; } assert( nSizeB > nSizeC ); if ( nSizeC == 0 ) return 1; for ( i = k = 0; i < nSizeB; i++ ) { if ( pBase->pLeaves[i] > pCut->pLeaves[k] ) return 0; if ( pBase->pLeaves[i] == pCut->pLeaves[k] ) { if ( ++k == nSizeC ) return 1; } } return 0; } static inline int Pf_SetLastCutIsContained( Pf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = 0; i < nCuts; i++ ) if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Pf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) ) return 1; return 0; } static inline int Pf_SetLastCutContainsArea( Pf_Cut_t ** pCuts, int nCuts ) { int i, k, fChanges = 0; for ( i = 0; i < nCuts; i++ ) if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Pf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) ) pCuts[i]->nLeaves = PF_NO_LEAF, fChanges = 1; if ( !fChanges ) return nCuts; for ( i = k = 0; i <= nCuts; i++ ) { if ( pCuts[i]->nLeaves == PF_NO_LEAF ) continue; if ( k < i ) ABC_SWAP( Pf_Cut_t *, pCuts[k], pCuts[i] ); k++; } return k - 1; } static inline int Pf_CutCompareArea( Pf_Cut_t * pCut0, Pf_Cut_t * pCut1 ) { if ( pCut0->Useless < pCut1->Useless ) return -1; if ( pCut0->Useless > pCut1->Useless ) return 1; if ( pCut0->Flow < pCut1->Flow ) return -1; if ( pCut0->Flow > pCut1->Flow ) return 1; if ( pCut0->Delay < pCut1->Delay ) return -1; if ( pCut0->Delay > pCut1->Delay ) return 1; if ( pCut0->nLeaves < pCut1->nLeaves ) return -1; if ( pCut0->nLeaves > pCut1->nLeaves ) return 1; return 0; } static inline void Pf_SetSortByArea( Pf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = nCuts; i > 0; i-- ) { if ( Pf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 ) return; ABC_SWAP( Pf_Cut_t *, pCuts[i - 1], pCuts[i] ); } } static inline int Pf_SetAddCut( Pf_Cut_t ** pCuts, int nCuts, int nCutNum ) { if ( nCuts == 0 ) return 1; nCuts = Pf_SetLastCutContainsArea(pCuts, nCuts); Pf_SetSortByArea( pCuts, nCuts ); return Abc_MinInt( nCuts + 1, nCutNum - 1 ); } static inline int Pf_CutArea( Pf_Man_t * p, int nLeaves ) { if ( nLeaves < 2 ) return 0; return nLeaves + p->pPars->nAreaTuner; } static inline void Pf_CutParams( Pf_Man_t * p, Pf_Cut_t * pCut, int nGiaRefs ) { int i, nLeaves = pCut->nLeaves; assert( nLeaves <= p->pPars->nLutSize ); pCut->Delay = 0; pCut->Flow = 0; for ( i = 0; i < nLeaves; i++ ) { pCut->Delay = Abc_MaxInt( pCut->Delay, Pf_ObjCutDelay(p, pCut->pLeaves[i]) ); pCut->Flow += Pf_ObjCutFlow(p, pCut->pLeaves[i]); } pCut->Delay += (int)(nLeaves > 1); pCut->Flow = (pCut->Flow + Pf_CutArea(p, nLeaves)) / (nGiaRefs ? nGiaRefs : 1); } void Pf_ObjMergeOrder( Pf_Man_t * p, int iObj ) { Pf_Cut_t pCuts0[PF_CUT_MAX], pCuts1[PF_CUT_MAX], pCuts[PF_CUT_MAX], * pCutsR[PF_CUT_MAX]; Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); int nGiaRefs = 2*Gia_ObjRefNumId(p->pGia, iObj); int nLutSize = p->pPars->nLutSize; int nCutNum = p->pPars->nCutNum; int nCuts0 = Pf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1); int nCuts1 = Pf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1); int fComp0 = Gia_ObjFaninC0(pObj); int fComp1 = Gia_ObjFaninC1(pObj); int iSibl = Gia_ObjSibl(p->pGia, iObj); Pf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1; int i, nCutsUse, nCutsR = 0; assert( !Gia_ObjIsBuf(pObj) ); for ( i = 0; i < nCutNum; i++ ) pCutsR[i] = pCuts + i; if ( iSibl ) { Pf_Cut_t pCuts2[PF_CUT_MAX]; Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj); int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE); int nCuts2 = Pf_ManPrepareCuts(pCuts2, p, iSibl, 0); Pf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { *pCutsR[nCutsR] = *pCut2; pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE ); Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } if ( Gia_ObjIsMuxId(p->pGia, iObj) ) { Pf_Cut_t pCuts2[PF_CUT_MAX]; int nCuts2 = Pf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1); int fComp2 = Gia_ObjFaninC2(p->pGia, pObj); Pf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; p->CutCount[0] += nCuts0 * nCuts1 * nCuts2; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { if ( Pf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Pf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) ) continue; if ( Pf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( Pf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) ) pCutsR[nCutsR]->Sign = Pf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } else { int fIsXor = Gia_ObjIsXor(pObj); p->CutCount[0] += nCuts0 * nCuts1; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) { if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Pf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Pf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) ) continue; if ( Pf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( Pf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) ) pCutsR[nCutsR]->Sign = Pf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Pf_CutParams( p, pCutsR[nCutsR], nGiaRefs ); nCutsR = Pf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } // debug printout if ( 0 ) // if ( iObj % 10000 == 0 ) // if ( iObj == 1090 ) { printf( "*** Obj = %d Useful = %d\n", iObj, Pf_ManCountUseful(pCutsR, nCutsR) ); for ( i = 0; i < nCutsR; i++ ) Pf_Cutprintf( p, pCutsR[i] ); printf( "\n" ); } // verify assert( nCutsR > 0 && nCutsR < nCutNum ); // assert( Pf_SetCheckArray(pCutsR, nCutsR) ); // store the cutset Pf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow ); Pf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay ); *Vec_IntEntryP(&p->vCutSets, iObj) = Pf_ManSaveCuts(p, pCutsR, nCutsR, 0); p->CutCount[3] += nCutsR; nCutsUse = Pf_ManCountUseful(pCutsR, nCutsR); p->CutCount[4] += nCutsUse; p->nCutUseAll += nCutsUse == nCutsR; p->CutCount[5] += Pf_ManCountMatches(p, pCutsR, nCutsR); } void Pf_ManComputeCuts( Pf_Man_t * p ) { Gia_Obj_t * pObj; int i, iFanin; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) { iFanin = Gia_ObjFaninId0(pObj, i); Pf_ObjSetCutFlow( p, i, Pf_ObjCutFlow(p, iFanin) ); Pf_ObjSetCutDelay( p, i, Pf_ObjCutDelay(p, iFanin) ); } else Pf_ObjMergeOrder( p, i ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Pf_ManPrintStats( Pf_Man_t * p, char * pTitle ) { if ( !p->pPars->fVerbose ) return; printf( "%s : ", pTitle ); printf( "Delay =%8.2f ", p->pPars->MapDelay ); printf( "Area =%12.2f ", p->pPars->MapArea ); printf( "Gate =%6d ", (int)p->pPars->Area ); printf( "Inv =%6d ", (int)p->nInvs ); printf( "Edge =%7d ", (int)p->pPars->Edge ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } void Pf_ManPrintInit( Pf_Man_t * p ) { int nChoices; if ( !p->pPars->fVerbose ) return; printf( "LutSize = %d ", p->pPars->nLutSize ); printf( "CutNum = %d ", p->pPars->nCutNum ); printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla ); printf( "Coarse = %d ", p->pPars->fCoarsen ); printf( "Cells = %d ", p->nCells ); printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) ); printf( "Matches = %d ", Vec_WecSizeSize(p->vTt2Match)/2 ); nChoices = Gia_ManChoiceNum( p->pGia ); if ( nChoices ) printf( "Choices = %d ", nChoices ); printf( "\n" ); printf( "Computing cuts...\r" ); fflush( stdout ); } void Pf_ManPrintQuit( Pf_Man_t * p ) { float MemGia = Gia_ManMemory(p->pGia) / (1<<20); float MemMan =(1.0 * sizeof(Pf_Obj_t) + 3.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20); float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20); float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0; if ( p->CutCount[0] == 0 ) p->CutCount[0] = 1; if ( !p->pPars->fVerbose ) return; printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) ); printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) ); printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) ); printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) ); printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) ); // printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] ); printf( "\n" ); printf( "Gia = %.2f MB ", MemGia ); printf( "Man = %.2f MB ", MemMan ); printf( "Cut = %.2f MB ", MemCuts ); printf( "TT = %.2f MB ", MemTt ); printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt ); // printf( "\n" ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ /* void Pf_ManSetMapRefsGate( Pf_Man_t * p, int iObj, float Required, Pf_Mat_t * pM ) { int k, iVar, fCompl; Mio_Cell_t * pCell = Pf_ManCell( p, pM->Gate ); int * pCut = Pf_CutFromHandle( Pf_ObjCutSet(p, iObj), pM->CutH ); Pf_CutForEachVar( pCut, pM->Conf, iVar, fCompl, k ) { Pf_ObjMapRefInc( p, iVar, fCompl ); Pf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->Delays[k] ); } assert( Pf_CutSize(pCut) == (int)pCell->nFanins ); // update global stats p->pPars->MapArea += pCell->Area; p->pPars->Edge += Pf_CutSize(pCut); p->pPars->Area++; // update status of the gate assert( pM->fBest == 0 ); pM->fBest = 1; } int Pf_ManSetMapRefs( Pf_Man_t * p ) { float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1)); float * pFlowRefs = Vec_FltArray( &p->vFlowRefs ); int * pMapRefs = Vec_IntArray( &p->vMapRefs ); float Epsilon = p->pPars->Epsilon; int nLits = 2*Gia_ManObjNum(p->pGia); int i, c, Id, nRefs[2]; Pf_Mat_t * pD, * pA, * pM; Pf_Mat_t * pDs[2], * pAs[2], * pMs[2]; Gia_Obj_t * pObj; float Required = 0, Requireds[2]; // check references assert( !p->fUseEla ); memset( pMapRefs, 0, sizeof(int) * nLits ); Vec_FltFill( &p->vRequired, nLits, PF_INFINITY ); // for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ ) // assert( !Pf_ObjMapRefNum(p, i, 0) && !Pf_ObjMapRefNum(p, i, 1) ); // compute delay p->pPars->MapDelay = 0; Gia_ManForEachCo( p->pGia, pObj, i ) { Required = Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D; if ( Required == PF_INFINITY ) { Pf_ManCutMatchprintf( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) ) ); } p->pPars->MapDelay = Abc_MaxFloat( p->pPars->MapDelay, Required ); } // check delay target if ( p->pPars->MapDelayTarget == -1 && p->pPars->nRelaxRatio ) p->pPars->MapDelayTarget = (int)((float)p->pPars->MapDelay * (100.0 + p->pPars->nRelaxRatio) / 100.0); if ( p->pPars->MapDelayTarget != -1 ) { if ( p->pPars->MapDelay < p->pPars->MapDelayTarget + Epsilon ) p->pPars->MapDelay = p->pPars->MapDelayTarget; else if ( p->pPars->nRelaxRatio == 0 ) Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", p->pPars->MapDelayTarget, p->pPars->MapDelay ); } // set required times Gia_ManForEachCo( p->pGia, pObj, i ) { Required = Pf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D; Required = p->pPars->fDoAverage ? Required * (100.0 + p->pPars->nRelaxRatio) / 100.0 : p->pPars->MapDelay; Pf_ObjUpdateRequired( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj), Required ); Pf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj)); } // compute area and edges p->nInvs = 0; p->pPars->MapArea = 0; p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { if ( Gia_ObjIsBuf(pObj) ) { if ( Pf_ObjMapRefNum(p, i, 1) ) { Pf_ObjMapRefInc( p, i, 0 ); Pf_ObjUpdateRequired( p, i, 0, Pf_ObjRequired(p, i, 1) - p->InvDelay ); p->pPars->MapArea += p->InvArea; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } Pf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Pf_ObjRequired(p, i, 0) ); Pf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj)); continue; } // skip if this node is not used for ( c = 0; c < 2; c++ ) { nRefs[c] = Pf_ObjMapRefNum(p, i, c); //if ( Pf_ObjMatchD( p, i, c )->fCompl ) // printf( "Match D of node %d has inv in phase %d.\n", i, c ); //if ( Pf_ObjMatchA( p, i, c )->fCompl ) // printf( "Match A of node %d has inv in phase %d.\n", i, c ); } if ( !nRefs[0] && !nRefs[1] ) continue; // consider two cases if ( nRefs[0] && nRefs[1] ) { // find best matches for both phases for ( c = 0; c < 2; c++ ) { Requireds[c] = Pf_ObjRequired( p, i, c ); //assert( Requireds[c] < PF_INFINITY ); pDs[c] = Pf_ObjMatchD( p, i, c ); pAs[c] = Pf_ObjMatchA( p, i, c ); pMs[c] = (pAs[c]->D < Requireds[c] + Epsilon) ? pAs[c] : pDs[c]; } // swap complemented matches if ( pMs[0]->fCompl && pMs[1]->fCompl ) { pMs[0]->fCompl = pMs[1]->fCompl = 0; ABC_SWAP( Pf_Mat_t *, pMs[0], pMs[1] ); } // check if intervers are involved if ( !pMs[0]->fCompl && !pMs[1]->fCompl ) { // no inverters for ( c = 0; c < 2; c++ ) Pf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] ); } else { // one interver assert( !pMs[0]->fCompl || !pMs[1]->fCompl ); c = pMs[1]->fCompl; assert( pMs[c]->fCompl && !pMs[!c]->fCompl ); //printf( "Using inverter at node %d in phase %d\n", i, c ); // update this phase phase pM = pMs[c]; pM->fBest = 1; Required = Requireds[c]; // update opposite phase Pf_ObjMapRefInc( p, i, !c ); Pf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay ); // select oppositve phase Required = Pf_ObjRequired( p, i, !c ); //assert( Required < PF_INFINITY ); pD = Pf_ObjMatchD( p, i, !c ); pA = Pf_ObjMatchA( p, i, !c ); pM = (pA->D < Required + Epsilon) ? pA : pD; assert( !pM->fCompl ); // account for the inverter p->pPars->MapArea += p->InvArea; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; // create gate Pf_ManSetMapRefsGate( p, i, Required, pM ); } } else { c = (int)(nRefs[1] > 0); assert( nRefs[c] && !nRefs[!c] ); // consider this phase Required = Pf_ObjRequired( p, i, c ); //assert( Required < PF_INFINITY ); pD = Pf_ObjMatchD( p, i, c ); pA = Pf_ObjMatchA( p, i, c ); pM = (pA->D < Required + Epsilon) ? pA : pD; if ( pM->fCompl ) // use inverter { p->nInvs++; //printf( "Using inverter at node %d in phase %d\n", i, c ); pM->fBest = 1; // update opposite phase Pf_ObjMapRefInc( p, i, !c ); Pf_ObjUpdateRequired( p, i, !c, Required - p->InvDelay ); // select oppositve phase Required = Pf_ObjRequired( p, i, !c ); //assert( Required < PF_INFINITY ); pD = Pf_ObjMatchD( p, i, !c ); pA = Pf_ObjMatchA( p, i, !c ); pM = (pA->D < Required + Epsilon) ? pA : pD; assert( !pM->fCompl ); // account for the inverter p->pPars->MapArea += p->InvArea; p->pPars->Edge++; p->pPars->Area++; } // create gate Pf_ManSetMapRefsGate( p, i, Required, pM ); } // the result of this: // - only one phase can be implemented as inverter of the other phase // - required times are propagated correctly // - references are set correctly } Gia_ManForEachCiId( p->pGia, Id, i ) if ( Pf_ObjMapRefNum(p, Id, 1) ) { Pf_ObjMapRefInc( p, Id, 0 ); Pf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelay ); p->pPars->MapArea += p->InvArea; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } // blend references for ( i = 0; i < nLits; i++ ) // pFlowRefs[i] = Abc_MaxFloat(1.0, pMapRefs[i]); pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i])); // pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]); // memset( pMapRefs, 0, sizeof(int) * nLits ); return p->pPars->Area; } Gia_Man_t * Pf_ManDeriveMapping( Pf_Man_t * p ) { Vec_Int_t * vMapping; Pf_Mat_t * pM; int i, k, c, Id, iLit, * pCut; assert( p->pGia->vCellMapping == NULL ); vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 ); Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 ); // create CI inverters Gia_ManForEachCiId( p->pGia, Id, i ) if ( Pf_ObjMapRefNum(p, Id, 1) ) Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 ); // create internal nodes Gia_ManForEachAndId( p->pGia, i ) { Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i); if ( Gia_ObjIsBuf(pObj) ) { if ( Pf_ObjMapRefNum(p, i, 1) ) Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 ); Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 ); continue; } for ( c = 0; c < 2; c++ ) if ( Pf_ObjMapRefNum(p, i, c) ) { // printf( "Using %d %d\n", i, c ); pM = Pf_ObjMatchBest( p, i, c ); // remember inverter if ( pM->fCompl ) { Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 ); continue; } // Pf_ManCutMatchprintf( p, i, c, pM ); pCut = Pf_CutFromHandle( Pf_ObjCutSet(p, i), pM->CutH ); // create mapping Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) ); Vec_IntPush( vMapping, Pf_CutSize(pCut) ); Pf_CutForEachLit( pCut, pM->Conf, iLit, k ) Vec_IntPush( vMapping, iLit ); Vec_IntPush( vMapping, pM->Gate ); } } // assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) ); p->pGia->vCellMapping = vMapping; return p->pGia; } */ /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Pf_ManComputeMapping( Pf_Man_t * p ) { } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Pf_ManSetDefaultPars( Jf_Par_t * pPars ) { memset( pPars, 0, sizeof(Jf_Par_t) ); pPars->nLutSize = 6; pPars->nCutNum = 16; pPars->nProcNum = 0; pPars->nRounds = 3; pPars->nRoundsEla = 0; pPars->nRelaxRatio = 0; pPars->nCoarseLimit = 3; pPars->nAreaTuner = 1; pPars->nVerbLimit = 5; pPars->DelayTarget = -1; pPars->fAreaOnly = 0; pPars->fOptEdge = 1; pPars->fCoarsen = 0; pPars->fCutMin = 1; pPars->fGenCnf = 0; pPars->fPureAig = 0; pPars->fVerbose = 0; pPars->fVeryVerbose = 0; pPars->nLutSizeMax = PF_LEAF_MAX; pPars->nCutNumMax = PF_CUT_MAX; pPars->MapDelayTarget = -1; pPars->Epsilon = (float)0.01; } Gia_Man_t * Pf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) { Gia_Man_t * pNew = NULL, * pCls; Pf_Man_t * p; if ( Gia_ManHasChoices(pGia) ) pPars->fCoarsen = 0; pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia; p = Pf_StoCreate( pCls, pPars ); // if ( pPars->fVeryVerbose ) Pf_StoPrint( p, 1 ); if ( pPars->fVerbose && pPars->fCoarsen ) { printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" ); printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" ); } Pf_ManPrintInit( p ); Pf_ManComputeCuts( p ); Pf_ManPrintQuit( p ); /* Gia_ManForEachCiId( p->pGia, Id, i ) Pf_ObjPrepareCi( p, Id ); for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ ) { Pf_ManComputeMapping( p ); //Pf_ManSetMapRefs( p ); Pf_ManPrintStats( p, p->Iter ? "Area " : "Delay" ); } p->fUseEla = 1; for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ ) { Pf_ManComputeMapping( p ); //Pf_ManUpdateStats( p ); Pf_ManPrintStats( p, "Ela " ); } */ pNew = NULL; //Pf_ManDeriveMapping( p ); // Gia_ManMappingVerify( pNew ); Pf_StoDelete( p ); if ( pCls != pGia ) Gia_ManStop( pCls ); if ( pNew == NULL ) return Gia_ManDup( pGia ); return pNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END