/**CFile**************************************************************** FileName [giaMf.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Cut computation.] Author [Alan Mishchenko]` Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaMf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "gia.h" #include "misc/vec/vecMem.h" #include "misc/util/utilTruth.h" #include "misc/extra/extra.h" #include "sat/cnf/cnf.h" #include "opt/dau/dau.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define MF_LEAF_MAX 10 #define MF_CUT_MAX 16 #define MF_LOG_PAGE 12 #define MF_NO_LEAF 31 #define MF_TT_WORDS ((MF_LEAF_MAX > 6) ? 1 << (MF_LEAF_MAX-6) : 1) #define MF_NO_FUNC 134217727 // (1<<27)-1 typedef struct Mf_Cut_t_ Mf_Cut_t; struct Mf_Cut_t_ { word Sign; // signature int Delay; // delay float Flow; // flow unsigned iFunc : 27; // function (MF_NO_FUNC) unsigned nLeaves : 5; // leaf number (MF_NO_LEAF) int pLeaves[MF_LEAF_MAX+1]; // leaves }; typedef struct Mf_Obj_t_ Mf_Obj_t; struct Mf_Obj_t_ { int iCutSet; // cutset float Flow; // area float nFlowRefs; // flow references unsigned Delay : 16; // delay unsigned nMapRefs : 16; // map references }; typedef struct Mf_Man_t_ Mf_Man_t; struct Mf_Man_t_ { // user data Gia_Man_t * pGia0; // original manager Gia_Man_t * pGia; // derived manager Jf_Par_t * pPars; // parameters // cut data Mf_Obj_t * pLfObjs; // best cuts Vec_Ptr_t vPages; // cut memory Vec_Mem_t * vTtMem; // truth tables Vec_Int_t vCnfSizes; // handles to CNF Vec_Int_t vCnfMem; // memory for CNF int iCur; // current position int Iter; // mapping iterations int fUseEla; // use exact area // statistics abctime clkStart; // starting time double CutCount[4]; // cut counts int nCutCounts[MF_LEAF_MAX+1]; }; static inline Mf_Obj_t * Mf_ManObj( Mf_Man_t * p, int i ) { return p->pLfObjs + i; } static inline int * Mf_ManCutSet( Mf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); } static inline int * Mf_ObjCutSet( Mf_Man_t * p, int i ) { return Mf_ManCutSet(p, Mf_ManObj(p, i)->iCutSet); } static inline int * Mf_ObjCutBest( Mf_Man_t * p, int i ) { return Mf_ObjCutSet(p, i) + 1; } static inline int Mf_ObjMapRefNum( Mf_Man_t * p, int i ) { return Mf_ManObj(p, i)->nMapRefs; } static inline int Mf_ObjMapRefInc( Mf_Man_t * p, int i ) { return Mf_ManObj(p, i)->nMapRefs++; } static inline int Mf_ObjMapRefDec( Mf_Man_t * p, int i ) { return --Mf_ManObj(p, i)->nMapRefs; } static inline int Mf_CutSize( int * pCut ) { return pCut[0] & MF_NO_LEAF; } static inline int Mf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); } static inline int Mf_CutSetBoth( int n, int f ) { return n | (f << 5); } static inline int Mf_CutIsTriv( int * pCut, int i ) { return Mf_CutSize(pCut) == 1 && pCut[1] == i; } #define Mf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Mf_CutSize(pCut) + 1 ) #define Mf_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ ) extern int Kit_TruthToGia( Gia_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory, Vec_Int_t * vLeaves, int fHash ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computing truth tables of useful DSD classes of 6-functions.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static int s_nCalls = 0; static Vec_Mem_t * s_vTtMem = NULL; int Mf_ManTruthCanonicize( word * t, int nVars ) { word Temp, Best = *t; int r, i, Config = 0; for ( r = 0; r < 1; r++ ) { if ( Best > (Temp = ~Best) ) Best = Temp, Config ^= (1 << nVars); for ( i = 0; i < nVars; i++ ) if ( Best > (Temp = Abc_Tt6Flip(Best, i)) ) Best = Temp, Config ^= (1 << i); } *t = Best; if ( s_vTtMem == NULL ) s_vTtMem = Vec_MemAllocForTT( 6, 0 ); Vec_MemHashInsert( s_vTtMem, t ); s_nCalls++; return Config; } void Mf_ManTruthQuit() { if ( s_vTtMem == NULL ) return; printf( "TT = %d (%.2f %%)\n", Vec_MemEntryNum(s_vTtMem), 100.0 * Vec_MemEntryNum(s_vTtMem) / s_nCalls ); Vec_MemHashFree( s_vTtMem ); Vec_MemFree( s_vTtMem ); s_vTtMem = NULL; s_nCalls = 0; } Vec_Wrd_t * Mf_ManTruthCollect( int Limit ) { extern Vec_Wrd_t * Mpm_ManGetTruthWithCnf( int Limit ); int * pPerm = Extra_PermSchedule( 6 ); int * pComp = Extra_GreyCodeSchedule( 6 ); Vec_Wrd_t * vTruths = Mpm_ManGetTruthWithCnf( Limit ); Vec_Wrd_t * vResult = Vec_WrdAlloc( 1 << 20 ); word uTruth, tCur, tTemp1, tTemp2; int i, p, c, k; Vec_WrdForEachEntry( vTruths, uTruth, k ) { for ( i = 0; i < 2; i++ ) { tCur = i ? ~uTruth : uTruth; tTemp1 = tCur; for ( p = 0; p < 720; p++ ) { tTemp2 = tCur; for ( c = 0; c < 64; c++ ) { tCur = Abc_Tt6Flip( tCur, pComp[c] ); Vec_WrdPush( vResult, tCur ); } assert( tTemp2 == tCur ); tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[p] ); } assert( tTemp1 == tCur ); } } ABC_FREE( pPerm ); ABC_FREE( pComp ); printf( "Original = %d. ", Vec_WrdSize(vTruths) ); Vec_WrdFree( vTruths ); printf( "Total = %d. ", Vec_WrdSize(vResult) ); vTruths = Vec_WrdUniqifyHash( vResult, 1 ); Vec_WrdFree( vResult ); printf( "Unique = %d. ", Vec_WrdSize(vTruths) ); Vec_WrdForEachEntry( vTruths, uTruth, k ) { Mf_ManTruthCanonicize( &uTruth, 6 ); Vec_WrdWriteEntry( vTruths, k, uTruth ); } vResult = Vec_WrdUniqifyHash( vTruths, 1 ); Vec_WrdFree( vTruths ); printf( "Unique = %d. \n", Vec_WrdSize(vResult) ); return vResult; } int Mf_ManTruthCount() { Vec_Wrd_t * vTruths = Mf_ManTruthCollect( 10 ); int RetValue = Vec_WrdSize( vTruths ); Vec_WrdFree( vTruths ); return RetValue; } /**Function************************************************************* Synopsis [Collect truth tables used by the mapper.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Mf_ManProfileTruths( Mf_Man_t * p ) { Vec_Int_t * vCounts; int i, Entry, * pCut, Counter = 0; vCounts = Vec_IntStart( Vec_IntSize(&p->vCnfSizes) ); Gia_ManForEachAndId( p->pGia, i ) { if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); Vec_IntAddToEntry( vCounts, Abc_Lit2Var(Mf_CutFunc(pCut)), 1 ); } Vec_IntForEachEntry( vCounts, Entry, i ) { if ( Entry == 0 ) continue; printf( "%6d : ", Counter++ ); printf( "%6d : ", i ); printf( "Occur = %4d ", Entry ); printf( "CNF size = %2d ", Vec_IntEntry(&p->vCnfSizes, i) ); Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, i), p->pPars->nLutSize ); } Vec_IntFree( vCounts ); } /**Function************************************************************* Synopsis [Derives CNFs for each function used in the mapping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Mf_CubeLit( int Cube, int iVar ) { return (Cube >> (iVar << 1)) & 3; } static inline int Mf_ManCountLits( int * pCnf, int nCubes, int nVars ) { int i, k, nLits = nCubes; for ( i = 0; i < nCubes; i++ ) for ( k = 0; k < nVars; k++ ) if ( Mf_CubeLit(pCnf[i], k) ) nLits++; return nLits; } Vec_Int_t * Mf_ManDeriveCnfs( Mf_Man_t * p, int * pnVars, int * pnClas, int * pnLits ) { int i, k, iFunc, nCubes, nLits, * pCut, pCnf[512]; Vec_Int_t * vLits = Vec_IntStart( Vec_IntSize(&p->vCnfSizes) ); Vec_Int_t * vCnfs = Vec_IntAlloc( 3 * Vec_IntSize(&p->vCnfSizes) ); Vec_IntFill( vCnfs, Vec_IntSize(&p->vCnfSizes), -1 ); assert( p->pPars->nLutSize <= 8 ); // constant/buffer for ( iFunc = 0; iFunc < 2; iFunc++ ) { if ( p->pPars->nLutSize <= 6 ) nCubes = Abc_Tt6Cnf( *Vec_MemReadEntry(p->vTtMem, iFunc), iFunc, pCnf ); else nCubes = Abc_Tt8Cnf( Vec_MemReadEntry(p->vTtMem, iFunc), iFunc, pCnf ); nLits = Mf_ManCountLits( pCnf, nCubes, iFunc ); Vec_IntWriteEntry( vLits, iFunc, nLits ); Vec_IntWriteEntry( vCnfs, iFunc, Vec_IntSize(vCnfs) ); Vec_IntPush( vCnfs, nCubes ); for ( k = 0; k < nCubes; k++ ) Vec_IntPush( vCnfs, pCnf[k] ); } // other functions *pnVars = 1 + Gia_ManCiNum(p->pGia) + Gia_ManCoNum(p->pGia); *pnClas = 1 + 2 * Gia_ManCoNum(p->pGia); *pnLits = 1 + 4 * Gia_ManCoNum(p->pGia); Gia_ManForEachAndId( p->pGia, i ) { if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); iFunc = Abc_Lit2Var( Mf_CutFunc(pCut) ); if ( Vec_IntEntry(vCnfs, iFunc) == -1 ) { if ( p->pPars->nLutSize <= 6 ) nCubes = Abc_Tt6Cnf( *Vec_MemReadEntry(p->vTtMem, iFunc), Mf_CutSize(pCut), pCnf ); else nCubes = Abc_Tt8Cnf( Vec_MemReadEntry(p->vTtMem, iFunc), Mf_CutSize(pCut), pCnf ); assert( nCubes == Vec_IntEntry(&p->vCnfSizes, iFunc) ); nLits = Mf_ManCountLits( pCnf, nCubes, Mf_CutSize(pCut) ); // save CNF Vec_IntWriteEntry( vLits, iFunc, nLits ); Vec_IntWriteEntry( vCnfs, iFunc, Vec_IntSize(vCnfs) ); Vec_IntPush( vCnfs, nCubes ); for ( k = 0; k < nCubes; k++ ) Vec_IntPush( vCnfs, pCnf[k] ); } *pnVars += 1; *pnClas += Vec_IntEntry(&p->vCnfSizes, iFunc); *pnLits += Vec_IntEntry(vLits, iFunc); } Vec_IntFree( vLits ); return vCnfs; } /**Function************************************************************* Synopsis [Derives CNF for the AIG using the mapping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Cnf_Dat_t * Mf_ManDeriveCnf( Mf_Man_t * p, int fCnfObjIds, int fAddOrCla ) { Cnf_Dat_t * pCnf; Gia_Obj_t * pObj; int Id, DriId, nVars, nClas, nLits, iVar = 1, iCla = 0, iLit = 0; Vec_Int_t * vCnfs = Mf_ManDeriveCnfs( p, &nVars, &nClas, &nLits ); Vec_Int_t * vCnfIds = Vec_IntStartFull( Gia_ManObjNum(p->pGia) ); int pFanins[16], * pCut, * pCnfIds = Vec_IntArray( vCnfIds ); int i, k, c, iFunc, nCubes, * pCubes, fComplLast; nVars++; // zero-ID to remain unused if ( fAddOrCla ) { nClas++; nLits += Gia_ManCoNum(p->pGia); } // create CNF IDs if ( fCnfObjIds ) { iVar += 1 + Gia_ManCiNum(p->pGia) + Gia_ManCoNum(p->pGia); Gia_ManForEachCoId( p->pGia, Id, i ) Vec_IntWriteEntry( vCnfIds, Id, Id ); Gia_ManForEachAndReverseId( p->pGia, Id ) if ( Mf_ObjMapRefNum(p, Id) ) Vec_IntWriteEntry( vCnfIds, Id, Id ), iVar++; Gia_ManForEachCiId( p->pGia, Id, i ) Vec_IntWriteEntry( vCnfIds, Id, Id ); Vec_IntWriteEntry( vCnfIds, 0, 0 ); assert( iVar == nVars ); } else { Gia_ManForEachCoId( p->pGia, Id, i ) Vec_IntWriteEntry( vCnfIds, Id, iVar++ ); Gia_ManForEachAndReverseId( p->pGia, Id ) if ( Mf_ObjMapRefNum(p, Id) ) Vec_IntWriteEntry( vCnfIds, Id, iVar++ ); Gia_ManForEachCiId( p->pGia, Id, i ) Vec_IntWriteEntry( vCnfIds, Id, iVar++ ); Vec_IntWriteEntry( vCnfIds, 0, iVar++ ); assert( iVar == nVars ); } // generate CNF pCnf = ABC_CALLOC( Cnf_Dat_t, 1 ); pCnf->pMan = (Aig_Man_t *)p->pGia; pCnf->nVars = nVars; pCnf->nLiterals = nLits; pCnf->nClauses = nClas; pCnf->pClauses = ABC_ALLOC( int *, nClas+1 ); pCnf->pClauses[0] = ABC_ALLOC( int, nLits ); // add last clause if ( fAddOrCla ) { pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; Gia_ManForEachCoId( p->pGia, Id, i ) pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 0); } // add clauses for the COs Gia_ManForEachCo( p->pGia, pObj, i ) { Id = Gia_ObjId( p->pGia, pObj ); DriId = Gia_ObjFaninId0( pObj, Id ); pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 0); pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[DriId], !Gia_ObjFaninC0(pObj)); pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 1); pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[DriId], Gia_ObjFaninC0(pObj)); } // add clauses for the mapping Gia_ManForEachAndReverseId( p->pGia, Id ) { if ( !Mf_ObjMapRefNum(p, Id) ) continue; pCut = Mf_ObjCutBest( p, Id ); iFunc = Abc_Lit2Var( Mf_CutFunc(pCut) ); //Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, iFunc), 3 ); fComplLast = Abc_LitIsCompl( Mf_CutFunc(pCut) ); for ( k = 0; k < Mf_CutSize(pCut); k++ ) pFanins[k] = pCnfIds[pCut[k+1]]; pFanins[k++] = pCnfIds[Id]; // get clauses pCubes = Vec_IntEntryP( vCnfs, Vec_IntEntry(vCnfs, iFunc) ); nCubes = *pCubes++; for ( c = 0; c < nCubes; c++ ) { pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; k = Mf_CutSize(pCut); assert( Mf_CubeLit(pCubes[c], k) ); pCnf->pClauses[0][iLit++] = Abc_Var2Lit( pFanins[k], (Mf_CubeLit(pCubes[c], k) == 2) ^ fComplLast ); for ( k = 0; k < Mf_CutSize(pCut); k++ ) if ( Mf_CubeLit(pCubes[c], k) ) pCnf->pClauses[0][iLit++] = Abc_Var2Lit( pFanins[k], Mf_CubeLit(pCubes[c], k) == 2 ); } } // constant clause pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[0], 1); assert( iCla == nClas ); assert( iLit == nLits ); // add closing pointer pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit; // cleanup Vec_IntFree( vCnfs ); // create mapping of objects into their clauses if ( fCnfObjIds ) { pCnf->pObj2Clause = ABC_FALLOC( int, Gia_ManObjNum(p->pGia) ); pCnf->pObj2Count = ABC_FALLOC( int, Gia_ManObjNum(p->pGia) ); for ( i = 0; i < pCnf->nClauses; i++ ) { Id = Abc_Lit2Var(pCnf->pClauses[i][0]); if ( pCnf->pObj2Clause[Id] == -1 ) { pCnf->pObj2Clause[Id] = i; pCnf->pObj2Count[Id] = 1; } else { assert( pCnf->pObj2Count[Id] > 0 ); pCnf->pObj2Count[Id]++; } } } else { if ( p->pGia != p->pGia0 ) // diff managers - create map for CIs/COs { pCnf->pVarNums = ABC_FALLOC( int, Gia_ManObjNum(p->pGia0) ); Gia_ManForEachCiId( p->pGia0, Id, i ) pCnf->pVarNums[Id] = pCnfIds[Gia_ManCiIdToId(p->pGia, i)]; Gia_ManForEachCoId( p->pGia0, Id, i ) pCnf->pVarNums[Id] = pCnfIds[Gia_ManCoIdToId(p->pGia, i)]; /* // transform polarity of the internal nodes Gia_ManSetPhase( p->pGia ); Gia_ManForEachCo( p->pGia, pObj, i ) pObj->fPhase = 0; for ( i = 0; i < pCnf->nLiterals; i++ ) if ( Gia_ManObj(p->pGia, Abc_Lit2Var(pCnf->pClauses[0][i]))->fPhase ) pCnf->pClauses[0][i] = Abc_LitNot( pCnf->pClauses[0][i] ); */ } else pCnf->pVarNums = Vec_IntReleaseArray(vCnfIds); } Vec_IntFree( vCnfIds ); return pCnf; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Mf_CutComputeTruth6( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, int fCompl0, int fCompl1, Mf_Cut_t * pCutR, int fIsXor ) { // extern int Mf_ManTruthCanonicize( word * t, int nVars ); int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = fIsXor ? t0 ^ t1 : t0 & t1; if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) ) Vec_IntPush( &p->vCnfSizes, Abc_Tt6CnfSize(t, pCutR->nLeaves) ); // p->nCutMux += Mf_ManTtIsMux( t ); assert( (int)pCutR->nLeaves <= nOldSupp ); // Mf_ManTruthCanonicize( &t, pCutR->nLeaves ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Mf_CutComputeTruth( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, int fCompl0, int fCompl1, Mf_Cut_t * pCutR, int fIsXor ) { if ( p->pPars->nLutSize <= 6 ) return Mf_CutComputeTruth6( p, pCut0, pCut1, fCompl0, fCompl1, pCutR, fIsXor ); { word uTruth[MF_TT_WORDS], uTruth0[MF_TT_WORDS], uTruth1[MF_TT_WORDS]; int nOldSupp = pCutR->nLeaves, truthId; int LutSize = p->pPars->nLutSize, fCompl; int nWords = Abc_Truth6WordNum(LutSize); word * pTruth0 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word * pTruth1 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ); Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ); Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); if ( fIsXor ) Abc_TtXor( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] ^ uTruth1[0]) & 1)) ); else Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] & uTruth1[0]) & 1)) ); pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize ); assert( (uTruth[0] & 1) == 0 ); //Kit_DsdPrintFromTruth( uTruth, pCutR->nLeaves ), printf("\n" ), printf("\n" ); truthId = Vec_MemHashInsert(p->vTtMem, uTruth); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) && LutSize <= 8 ) Vec_IntPush( &p->vCnfSizes, Abc_Tt8CnfSize(uTruth, pCutR->nLeaves) ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } } static inline int Mf_CutComputeTruthMux6( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Mf_Cut_t * pCutR ) { int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = (tC & t1) | (~tC & t0); if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) ) Vec_IntPush( &p->vCnfSizes, Abc_Tt6CnfSize(t, pCutR->nLeaves) ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Mf_CutComputeTruthMux( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Mf_Cut_t * pCutR ) { if ( p->pPars->nLutSize <= 6 ) return Mf_CutComputeTruthMux6( p, pCut0, pCut1, pCutC, fCompl0, fCompl1, fComplC, pCutR ); { word uTruth[MF_TT_WORDS], uTruth0[MF_TT_WORDS], uTruth1[MF_TT_WORDS], uTruthC[MF_TT_WORDS]; int nOldSupp = pCutR->nLeaves, truthId; int LutSize = p->pPars->nLutSize, fCompl; int nWords = Abc_Truth6WordNum(LutSize); word * pTruth0 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word * pTruth1 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); word * pTruthC = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc)); Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ); Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ); Abc_TtCopy( uTruthC, pTruthC, nWords, Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ); Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); Abc_TtExpand( uTruthC, LutSize, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); Abc_TtMux( uTruth, uTruthC, uTruth1, uTruth0, nWords ); fCompl = (int)(uTruth[0] & 1); if ( fCompl ) Abc_TtNot( uTruth, nWords ); pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize ); assert( (uTruth[0] & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, uTruth); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) && LutSize <= 8 ) Vec_IntPush( &p->vCnfSizes, Abc_Tt8CnfSize(uTruth, pCutR->nLeaves) ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Mf_CutCountBits( word i ) { i = i - ((i >> 1) & 0x5555555555555555); i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333); i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F); return (i*(0x0101010101010101))>>56; } static inline word Mf_CutGetSign( int * pLeaves, int nLeaves ) { word Sign = 0; int i; for ( i = 0; i < nLeaves; i++ ) Sign |= ((word)1) << (pLeaves[i] & 0x3F); return Sign; } static inline int Mf_CutCreateUnit( Mf_Cut_t * p, int i ) { p->Delay = 0; p->Flow = 0; p->iFunc = 2; p->nLeaves = 1; p->pLeaves[0] = i; p->Sign = ((word)1) << (i & 0x3F); return 1; } static inline void Mf_CutPrint( Mf_Man_t * p, Mf_Cut_t * pCut ) { int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); printf( "%d {", pCut->nLeaves ); for ( i = 0; i < (int)pCut->nLeaves; i++ ) printf( " %*d", nDigits, pCut->pLeaves[i] ); for ( ; i < (int)p->pPars->nLutSize; i++ ) printf( " %*s", nDigits, " " ); printf( " } D = %4d A = %9.4f F = %6d ", pCut->Delay, pCut->Flow, pCut->iFunc ); if ( p->vTtMem ) { if ( p->pPars->fGenCnf ) printf( "CNF = %2d ", Vec_IntEntry(&p->vCnfSizes, Abc_Lit2Var(pCut->iFunc)) ); Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves ); } else printf( "\n" ); } static inline int Mf_ManPrepareCuts( Mf_Cut_t * pCuts, Mf_Man_t * p, int iObj, int fAddUnit ) { if ( Mf_ManObj(p, iObj)->iCutSet ) { Mf_Cut_t * pMfCut = pCuts; int i, * pCut, * pList = Mf_ObjCutSet(p, iObj); Mf_SetForEachCut( pList, pCut, i ) { pMfCut->Delay = 0; pMfCut->Flow = 0; pMfCut->iFunc = Mf_CutFunc( pCut ); pMfCut->nLeaves = Mf_CutSize( pCut ); pMfCut->Sign = Mf_CutGetSign( pCut+1, Mf_CutSize(pCut) ); memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Mf_CutSize(pCut) ); pMfCut++; } if ( fAddUnit && pCuts->nLeaves > 1 ) return pList[0] + Mf_CutCreateUnit( pMfCut, iObj ); return pList[0]; } return Mf_CutCreateUnit( pCuts, iObj ); } static inline int Mf_ManSaveCuts( Mf_Man_t * p, Mf_Cut_t ** pCuts, int nCuts ) { int i, * pPlace, iCur, nInts = 1; for ( i = 0; i < nCuts; i++ ) nInts += pCuts[i]->nLeaves + 1; if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF ) p->iCur = ((p->iCur >> 16) + 1) << 16; if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) ) Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) ); iCur = p->iCur; p->iCur += nInts; pPlace = Mf_ManCutSet( p, iCur ); *pPlace++ = nCuts; for ( i = 0; i < nCuts; i++ ) { *pPlace++ = Mf_CutSetBoth(pCuts[i]->nLeaves, pCuts[i]->iFunc); memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves ); pPlace += pCuts[i]->nLeaves; } return iCur; } static inline void Mf_ObjSetBestCut( int * pCuts, int * pCut ) { assert( pCuts < pCut ); if ( ++pCuts < pCut ) { int pTemp[MF_CUT_MAX*(MF_LEAF_MAX+2)]; int nBlock = pCut - pCuts; int nSize = Mf_CutSize(pCut) + 1; memmove( pTemp, pCuts, sizeof(int) * nBlock ); memmove( pCuts, pCut, sizeof(int) * nSize ); memmove( pCuts + nSize, pTemp, sizeof(int) * nBlock ); } } /**Function************************************************************* Synopsis [Check correctness of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Mf_CutCheck( Mf_Cut_t * pBase, Mf_Cut_t * pCut ) // check if pCut is contained in pBase { int nSizeB = pBase->nLeaves; int nSizeC = pCut->nLeaves; int i, * pB = pBase->pLeaves; int k, * pC = pCut->pLeaves; for ( i = 0; i < nSizeC; i++ ) { for ( k = 0; k < nSizeB; k++ ) if ( pC[i] == pB[k] ) break; if ( k == nSizeB ) return 0; } return 1; } static inline int Mf_SetCheckArray( Mf_Cut_t ** ppCuts, int nCuts ) { Mf_Cut_t * pCut0, * pCut1; int i, k, m, n, Value; assert( nCuts > 0 ); for ( i = 0; i < nCuts; i++ ) { pCut0 = ppCuts[i]; assert( pCut0->nLeaves <= MF_LEAF_MAX ); assert( pCut0->Sign == Mf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) ); // check duplicates for ( m = 0; m < (int)pCut0->nLeaves; m++ ) for ( n = m + 1; n < (int)pCut0->nLeaves; n++ ) assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] ); // check pairs for ( k = 0; k < nCuts; k++ ) { pCut1 = ppCuts[k]; if ( pCut0 == pCut1 ) continue; // check containments Value = Mf_CutCheck( pCut0, pCut1 ); assert( Value == 0 ); } } return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Mf_CutMergeOrder( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCut, int nLutSize ) { int nSize0 = pCut0->nLeaves; int nSize1 = pCut1->nLeaves; int i, * pC0 = pCut0->pLeaves; int k, * pC1 = pCut1->pLeaves; int c, * pC = pCut->pLeaves; // the case of the largest cut sizes if ( nSize0 == nLutSize && nSize1 == nLutSize ) { for ( i = 0; i < nSize0; i++ ) { if ( pC0[i] != pC1[i] ) return 0; pC[i] = pC0[i]; } pCut->nLeaves = nLutSize; pCut->iFunc = MF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } // compare two cuts with different numbers i = k = c = 0; if ( nSize0 == 0 ) goto FlushCut1; if ( nSize1 == 0 ) goto FlushCut0; while ( 1 ) { if ( c == nLutSize ) return 0; if ( pC0[i] < pC1[k] ) { pC[c++] = pC0[i++]; if ( i >= nSize0 ) goto FlushCut1; } else if ( pC0[i] > pC1[k] ) { pC[c++] = pC1[k++]; if ( k >= nSize1 ) goto FlushCut0; } else { pC[c++] = pC0[i++]; k++; if ( i >= nSize0 ) goto FlushCut1; if ( k >= nSize1 ) goto FlushCut0; } } FlushCut0: if ( c + nSize0 > nLutSize + i ) return 0; while ( i < nSize0 ) pC[c++] = pC0[i++]; pCut->nLeaves = c; pCut->iFunc = MF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; FlushCut1: if ( c + nSize1 > nLutSize + k ) return 0; while ( k < nSize1 ) pC[c++] = pC1[k++]; pCut->nLeaves = c; pCut->iFunc = MF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Mf_CutMergeOrderMux( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCut2, Mf_Cut_t * pCut, int nLutSize ) { int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves; int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves; int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves; int xMin, c = 0, * pC = pCut->pLeaves; while ( 1 ) { x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0]; x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1]; x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2]; xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 ); if ( xMin == ABC_INFINITY ) break; if ( c == nLutSize ) return 0; pC[c++] = xMin; if (x0 == xMin) i0++; if (x1 == xMin) i1++; if (x2 == xMin) i2++; } pCut->nLeaves = c; pCut->iFunc = MF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign; return 1; } static inline int Mf_SetCutIsContainedOrder( Mf_Cut_t * pBase, Mf_Cut_t * pCut ) // check if pCut is contained in pBase { int i, nSizeB = pBase->nLeaves; int k, nSizeC = pCut->nLeaves; if ( nSizeB == nSizeC ) { for ( i = 0; i < nSizeB; i++ ) if ( pBase->pLeaves[i] != pCut->pLeaves[i] ) return 0; return 1; } assert( nSizeB > nSizeC ); if ( nSizeC == 0 ) return 1; for ( i = k = 0; i < nSizeB; i++ ) { if ( pBase->pLeaves[i] > pCut->pLeaves[k] ) return 0; if ( pBase->pLeaves[i] == pCut->pLeaves[k] ) { if ( ++k == nSizeC ) return 1; } } return 0; } static inline int Mf_SetLastCutIsContained( Mf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = 0; i < nCuts; i++ ) if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Mf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) ) return 1; return 0; } static inline int Mf_SetLastCutContainsArea( Mf_Cut_t ** pCuts, int nCuts ) { int i, k, fChanges = 0; for ( i = 0; i < nCuts; i++ ) if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Mf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) ) pCuts[i]->nLeaves = MF_NO_LEAF, fChanges = 1; if ( !fChanges ) return nCuts; for ( i = k = 0; i <= nCuts; i++ ) { if ( pCuts[i]->nLeaves == MF_NO_LEAF ) continue; if ( k < i ) ABC_SWAP( Mf_Cut_t *, pCuts[k], pCuts[i] ); k++; } return k - 1; } static inline int Mf_CutCompareArea( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1 ) { if ( pCut0->Flow < pCut1->Flow ) return -1; if ( pCut0->Flow > pCut1->Flow ) return 1; if ( pCut0->Delay < pCut1->Delay ) return -1; if ( pCut0->Delay > pCut1->Delay ) return 1; if ( pCut0->nLeaves < pCut1->nLeaves ) return -1; if ( pCut0->nLeaves > pCut1->nLeaves ) return 1; return 0; } static inline void Mf_SetSortByArea( Mf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = nCuts; i > 0; i-- ) { if ( Mf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 ) return; ABC_SWAP( Mf_Cut_t *, pCuts[i - 1], pCuts[i] ); } } static inline int Mf_SetAddCut( Mf_Cut_t ** pCuts, int nCuts, int nCutNum ) { if ( nCuts == 0 ) return 1; nCuts = Mf_SetLastCutContainsArea(pCuts, nCuts); Mf_SetSortByArea( pCuts, nCuts ); return Abc_MinInt( nCuts + 1, nCutNum - 1 ); } static inline int Mf_CutArea( Mf_Man_t * p, int nLeaves, int iFunc ) { if ( nLeaves < 2 ) return 0; if ( p->pPars->fGenCnf ) return Vec_IntEntry(&p->vCnfSizes, Abc_Lit2Var(iFunc)); if ( p->pPars->fOptEdge ) return nLeaves + p->pPars->nAreaTuner; return 1; } static inline void Mf_CutParams( Mf_Man_t * p, Mf_Cut_t * pCut, float FlowRefs ) { Mf_Obj_t * pBest; int i, nLeaves = pCut->nLeaves; assert( nLeaves <= p->pPars->nLutSize ); pCut->Delay = 0; pCut->Flow = 0; for ( i = 0; i < nLeaves; i++ ) { pBest = Mf_ManObj(p, pCut->pLeaves[i]); pCut->Delay = Abc_MaxInt( pCut->Delay, pBest->Delay ); pCut->Flow += pBest->Flow; } pCut->Delay += (int)(nLeaves > 1); pCut->Flow = (pCut->Flow + Mf_CutArea(p, nLeaves, pCut->iFunc)) / FlowRefs; } void Mf_ObjMergeOrder( Mf_Man_t * p, int iObj ) { Mf_Cut_t pCuts0[MF_CUT_MAX], pCuts1[MF_CUT_MAX], pCuts[MF_CUT_MAX], * pCutsR[MF_CUT_MAX]; Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); Mf_Obj_t * pBest = Mf_ManObj(p, iObj); int nLutSize = p->pPars->nLutSize; int nCutNum = p->pPars->nCutNum; int nCuts0 = Mf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1); int nCuts1 = Mf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1); int fComp0 = Gia_ObjFaninC0(pObj); int fComp1 = Gia_ObjFaninC1(pObj); int iSibl = Gia_ObjSibl(p->pGia, iObj); Mf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1; int i, nCutsR = 0; for ( i = 0; i < nCutNum; i++ ) pCutsR[i] = pCuts + i; if ( iSibl ) { Mf_Cut_t pCuts2[MF_CUT_MAX]; Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj); int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE); int nCuts2 = Mf_ManPrepareCuts(pCuts2, p, iSibl, 0); Mf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { *pCutsR[nCutsR] = *pCut2; if ( pCutsR[nCutsR]->iFunc >= 0 ) pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE ); Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs ); nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } if ( Gia_ObjIsMuxId(p->pGia, iObj) ) { Mf_Cut_t pCuts2[MF_CUT_MAX]; int nCuts2 = Mf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1); int fComp2 = Gia_ObjFaninC2(p->pGia, pObj); Mf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; p->CutCount[0] += nCuts0 * nCuts1 * nCuts2; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { if ( Mf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Mf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) ) continue; if ( Mf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( p->pPars->fCutMin && Mf_CutComputeTruthMux(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) ) pCutsR[nCutsR]->Sign = Mf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs ); nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } else { int fIsXor = Gia_ObjIsXor(pObj); p->CutCount[0] += nCuts0 * nCuts1; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) { if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Mf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Mf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) ) continue; if ( Mf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( p->pPars->fCutMin && Mf_CutComputeTruth(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) ) pCutsR[nCutsR]->Sign = Mf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs ); nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } // debug printout if ( 0 ) // if ( iObj % 1000 == 0 ) // if ( iObj == 474 ) { printf( "*** Obj = %d FlowRefs = %.2f MapRefs = %2d\n", iObj, pBest->nFlowRefs, pBest->nMapRefs ); for ( i = 0; i < nCutsR; i++ ) Mf_CutPrint( p, pCutsR[i] ); printf( "\n" ); } // store the cutset pBest->Flow = pCutsR[0]->Flow; pBest->Delay = pCutsR[0]->Delay; pBest->iCutSet = Mf_ManSaveCuts( p, pCutsR, nCutsR ); // verify assert( nCutsR > 0 && nCutsR < nCutNum ); // assert( Mf_SetCheckArray(pCutsR, nCutsR) ); p->nCutCounts[pCutsR[0]->nLeaves]++; p->CutCount[3] += nCutsR; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs ) { int fDiscount = 1; Gia_Obj_t * pObj, * pCtrl, * pData0, * pData1; int i, Id; Vec_IntFill( vRefs, Gia_ManObjNum(p), 0 ); Gia_ManForEachAnd( p, pObj, i ) { if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) ) Vec_IntAddToEntry( vRefs, Gia_ObjFaninId0(pObj, i), 1 ); if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) ) Vec_IntAddToEntry( vRefs, Gia_ObjFaninId1(pObj, i), 1 ); if ( p->pMuxes ) { if ( Gia_ObjIsMuxId(p, i) && Gia_ObjIsAnd(Gia_ObjFanin2(p, pObj)) ) Vec_IntAddToEntry( vRefs, Gia_ObjFaninId2(p, i), 1 ); } else if ( fDiscount && Gia_ObjIsMuxType(pObj) ) // discount XOR/MUX { pCtrl = Gia_Regular(Gia_ObjRecognizeMux(pObj, &pData1, &pData0)); pData0 = Gia_Regular(pData0); pData1 = Gia_Regular(pData1); if ( Gia_ObjIsAnd(pCtrl) ) Vec_IntAddToEntry( vRefs, Gia_ObjId(p, pCtrl), -1 ); if ( pData0 == pData1 && Gia_ObjIsAnd(pData0) ) Vec_IntAddToEntry( vRefs, Gia_ObjId(p, pData0), -1 ); } } Gia_ManForEachCoDriverId( p, Id, i ) if ( Gia_ObjIsAnd(Gia_ManObj(p, Id)) ) Vec_IntAddToEntry( vRefs, Id, 1 ); for ( i = 0; i < Vec_IntSize(vRefs); i++ ) Vec_IntUpdateEntry( vRefs, i, 1 ); } int Mf_ManSetMapRefs( Mf_Man_t * p ) { float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1)); int * pCut, i, k, Id; // compute delay int Delay = 0; Gia_ManForEachCoDriverId( p->pGia, Id, i ) Delay = Abc_MaxInt( Delay, Mf_ManObj(p, Id)->Delay ); // check delay target if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio ) p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0); if ( p->pPars->DelayTarget != -1 ) { if ( Delay < p->pPars->DelayTarget + 0.01 ) Delay = p->pPars->DelayTarget; else if ( p->pPars->nRelaxRatio == 0 ) Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay ); } p->pPars->Delay = Delay; // check references // Gia_ManForEachAndId( p->pGia, i ) // assert( Mf_ManObj(p, i)->nMapRefs == 0 ); // compute area and edges if ( !p->fUseEla ) Gia_ManForEachCoDriverId( p->pGia, Id, i ) Mf_ObjMapRefInc( p, Id ); p->pPars->Area = p->pPars->Edge = p->pPars->Clause = 0; Gia_ManForEachAndReverseId( p->pGia, i ) { if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); if ( !p->fUseEla ) for ( k = 1; k <= Mf_CutSize(pCut); k++ ) Mf_ObjMapRefInc( p, pCut[k] ); p->pPars->Edge += Mf_CutSize(pCut); p->pPars->Area++; if ( p->pPars->fGenCnf ) p->pPars->Clause += Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut)); } // blend references for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ ) p->pLfObjs[i].nFlowRefs = Coef * p->pLfObjs[i].nFlowRefs + (1.0 - Coef) * Abc_MaxFloat(1, p->pLfObjs[i].nMapRefs); // p->pLfObjs[i]. = 0.2 * p->pLfObjs[i]. + 0.8 * Abc_MaxFloat(1, p->pLfObjs[i].nMapRefs); return p->pPars->Area; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Mf_ManDeriveMapping( Mf_Man_t * p ) { Vec_Int_t * vMapping; int i, k, * pCut; assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL ); vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 ); Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 ); Gia_ManForEachAndId( p->pGia, i ) { if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) ); Vec_IntPush( vMapping, Mf_CutSize(pCut) ); for ( k = 1; k <= Mf_CutSize(pCut); k++ ) Vec_IntPush( vMapping, pCut[k] ); Vec_IntPush( vMapping, i ); } assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) ); p->pGia->vMapping = vMapping; return p->pGia; } Gia_Man_t * Mf_ManDeriveMappingCoarse( Mf_Man_t * p ) { Gia_Man_t * pNew, * pGia = p->pGia; Gia_Obj_t * pObj; int i, k, * pCut; assert( !p->pPars->fCutMin && pGia->pMuxes ); // create new manager pNew = Gia_ManStart( Gia_ManObjNum(pGia) ); pNew->pName = Abc_UtilStrsav( pGia->pName ); pNew->pSpec = Abc_UtilStrsav( pGia->pSpec ); // map primary inputs Gia_ManConst0(pGia)->Value = 0; Gia_ManForEachCi( pGia, pObj, i ) pObj->Value = Gia_ManAppendCi( pNew ); // start mapping pNew->vMapping = Vec_IntAlloc( Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 ); Vec_IntFill( pNew->vMapping, Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia), 0 ); // iterate through nodes used in the mapping Gia_ManForEachAnd( pGia, pObj, i ) { if ( Gia_ObjIsMuxId(pGia, i) ) pObj->Value = Gia_ManAppendMux( pNew, Gia_ObjFanin2Copy(pGia, pObj), Gia_ObjFanin1Copy(pObj), Gia_ObjFanin0Copy(pObj) ); else if ( Gia_ObjIsXor(pObj) ) pObj->Value = Gia_ManAppendXor( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); else pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); Vec_IntWriteEntry( pNew->vMapping, Abc_Lit2Var(pObj->Value), Vec_IntSize(pNew->vMapping) ); Vec_IntPush( pNew->vMapping, Mf_CutSize(pCut)); for ( k = 1; k <= Mf_CutSize(pCut); k++ ) Vec_IntPush( pNew->vMapping, Abc_Lit2Var(Gia_ManObj(pGia, pCut[k])->Value) ); Vec_IntPush( pNew->vMapping, Abc_Lit2Var(pObj->Value) ); } Gia_ManForEachCo( pGia, pObj, i ) pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) ); assert( Vec_IntCap(pNew->vMapping) == 16 || Vec_IntSize(pNew->vMapping) == Vec_IntCap(pNew->vMapping) ); return pNew; } Gia_Man_t * Mf_ManDeriveMappingGia( Mf_Man_t * p ) { Gia_Man_t * pNew; Gia_Obj_t * pObj; Vec_Int_t * vCopies = Vec_IntStartFull( Gia_ManObjNum(p->pGia) ); Vec_Int_t * vMapping = Vec_IntStart( 2 * Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + 2 * (int)p->pPars->Area ); Vec_Int_t * vMapping2 = Vec_IntStart( (int)p->pPars->Edge + 2 * (int)p->pPars->Area + 1000 ); Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 ); Vec_Int_t * vLeaves = Vec_IntAlloc( 16 ); int i, k, Id, iLit, * pCut; word uTruth = 0, * pTruth = &uTruth; assert( p->pPars->fCutMin ); // create new manager pNew = Gia_ManStart( Gia_ManObjNum(p->pGia) ); pNew->pName = Abc_UtilStrsav( p->pGia->pName ); pNew->pSpec = Abc_UtilStrsav( p->pGia->pSpec ); // map primary inputs Vec_IntWriteEntry( vCopies, 0, 0 ); Gia_ManForEachCiId( p->pGia, Id, i ) Vec_IntWriteEntry( vCopies, Id, Gia_ManAppendCi(pNew) ); // iterate through nodes used in the mapping Gia_ManForEachAnd( p->pGia, pObj, i ) { if ( !Mf_ObjMapRefNum(p, i) ) continue; pCut = Mf_ObjCutBest( p, i ); if ( Mf_CutSize(pCut) == 0 ) { assert( Abc_Lit2Var(Mf_CutFunc(pCut)) == 0 ); Vec_IntWriteEntry( vCopies, i, Mf_CutFunc(pCut) ); continue; } if ( Mf_CutSize(pCut) == 1 ) { assert( Abc_Lit2Var(Mf_CutFunc(pCut)) == 1 ); iLit = Vec_IntEntry( vCopies, pCut[1] ); Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(Mf_CutFunc(pCut))) ); continue; } Vec_IntClear( vLeaves ); for ( k = 1; k <= Mf_CutSize(pCut); k++ ) Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut[k]) ); pTruth = Vec_MemReadEntry( p->vTtMem, Abc_Lit2Var(Mf_CutFunc(pCut)) ); iLit = Kit_TruthToGia( pNew, (unsigned *)pTruth, Vec_IntSize(vLeaves), vCover, vLeaves, 0 ); Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(Mf_CutFunc(pCut))) ); // create mapping Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) ); Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) ); Vec_IntForEachEntry( vLeaves, iLit, k ) Vec_IntPush( vMapping2, Abc_Lit2Var(iLit) ); Vec_IntPush( vMapping2, Abc_Lit2Var(Vec_IntEntry(vCopies, i)) ); } Gia_ManForEachCo( p->pGia, pObj, i ) { iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) ); iLit = Gia_ManAppendCo( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) ); } Vec_IntFree( vCopies ); Vec_IntFree( vCover ); Vec_IntFree( vLeaves ); // finish mapping if ( Vec_IntSize(vMapping) > Gia_ManObjNum(pNew) ) Vec_IntShrink( vMapping, Gia_ManObjNum(pNew) ); else Vec_IntFillExtra( vMapping, Gia_ManObjNum(pNew), 0 ); assert( Vec_IntSize(vMapping) == Gia_ManObjNum(pNew) ); Vec_IntForEachEntry( vMapping, iLit, i ) if ( iLit > 0 ) Vec_IntAddToEntry( vMapping, i, Gia_ManObjNum(pNew) ); Vec_IntAppend( vMapping, vMapping2 ); Vec_IntFree( vMapping2 ); // attach mapping and packing assert( pNew->vMapping == NULL ); pNew->vMapping = vMapping; Gia_ManSetRegNum( pNew, Gia_ManRegNum(p->pGia) ); return pNew; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Mf_Man_t * Mf_ManAlloc( Gia_Man_t * pGia, Jf_Par_t * pPars ) { Mf_Man_t * p; Vec_Int_t * vFlowRefs; int i, Entry; assert( pPars->nCutNum > 1 && pPars->nCutNum <= MF_CUT_MAX ); assert( pPars->nLutSize > 1 && pPars->nLutSize <= MF_LEAF_MAX ); ABC_FREE( pGia->pRefs ); Vec_IntFreeP( &pGia->vMapping ); if ( Gia_ManHasChoices(pGia) ) Gia_ManSetPhase(pGia); p = ABC_CALLOC( Mf_Man_t, 1 ); p->clkStart = Abc_Clock(); p->pGia = pGia; p->pPars = pPars; p->vTtMem = pPars->fCutMin ? Vec_MemAllocForTT( pPars->nLutSize, 0 ) : NULL; p->pLfObjs = ABC_CALLOC( Mf_Obj_t, Gia_ManObjNum(pGia) ); p->iCur = 2; Vec_PtrGrow( &p->vPages, 256 ); if ( pPars->fGenCnf ) { Vec_IntGrow( &p->vCnfSizes, 10000 ); Vec_IntPush( &p->vCnfSizes, 1 ); Vec_IntPush( &p->vCnfSizes, 2 ); Vec_IntGrow( &p->vCnfMem, 10000 ); } vFlowRefs = Vec_IntAlloc(0); Mf_ManSetFlowRefs( pGia, vFlowRefs ); Vec_IntForEachEntry( vFlowRefs, Entry, i ) p->pLfObjs[i].nFlowRefs = Entry; Vec_IntFree(vFlowRefs); return p; } void Mf_ManFree( Mf_Man_t * p ) { assert( !p->pPars->fGenCnf || Vec_IntSize(&p->vCnfSizes) == Vec_MemEntryNum(p->vTtMem) ); if ( p->pPars->fCutMin ) Vec_MemHashFree( p->vTtMem ); if ( p->pPars->fCutMin ) Vec_MemFree( p->vTtMem ); Vec_PtrFreeData( &p->vPages ); ABC_FREE( p->vCnfSizes.pArray ); ABC_FREE( p->vCnfMem.pArray ); ABC_FREE( p->vPages.pArray ); ABC_FREE( p->pLfObjs ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Mf_ManSetDefaultPars( Jf_Par_t * pPars ) { memset( pPars, 0, sizeof(Jf_Par_t) ); pPars->nLutSize = 6; pPars->nCutNum = 8; pPars->nProcNum = 0; pPars->nRounds = 2; pPars->nRoundsEla = 1; pPars->nRelaxRatio = 0; pPars->nCoarseLimit = 3; pPars->nAreaTuner = 1; pPars->nVerbLimit = 5; pPars->DelayTarget = -1; pPars->fAreaOnly = 0; pPars->fOptEdge = 1; pPars->fCoarsen = 1; pPars->fCutMin = 0; pPars->fGenCnf = 0; pPars->fPureAig = 0; pPars->fVerbose = 0; pPars->fVeryVerbose = 0; pPars->nLutSizeMax = MF_LEAF_MAX; pPars->nCutNumMax = MF_CUT_MAX; } void Mf_ManPrintStats( Mf_Man_t * p, char * pTitle ) { if ( !p->pPars->fVerbose ) return; printf( "%s : ", pTitle ); printf( "Level =%6lu ", p->pPars->Delay ); printf( "Area =%9lu ", p->pPars->Area ); printf( "Edge =%9lu ", p->pPars->Edge ); if ( p->pPars->fGenCnf ) printf( "CNF =%9lu ", p->pPars->Clause ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } void Mf_ManPrintInit( Mf_Man_t * p ) { if ( !p->pPars->fVerbose ) return; printf( "LutSize = %d ", p->pPars->nLutSize ); printf( "CutNum = %d ", p->pPars->nCutNum ); printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla ); printf( "Edge = %d ", p->pPars->fOptEdge ); printf( "CutMin = %d ", p->pPars->fCutMin ); printf( "Coarse = %d ", p->pPars->fCoarsen ); printf( "CNF = %d ", p->pPars->fGenCnf ); printf( "\n" ); printf( "Computing cuts...\r" ); fflush( stdout ); } void Mf_ManPrintQuit( Mf_Man_t * p, Gia_Man_t * pNew ) { float MemGia = Gia_ManMemory(p->pGia) / (1<<20); float MemMan = 1.0 * sizeof(Mf_Obj_t) * Gia_ManObjNum(p->pGia) / (1<<20); float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20); float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0; float MemMap = Vec_IntMemory(pNew->vMapping) / (1<<20); if ( p->CutCount[0] == 0 ) p->CutCount[0] = 1; if ( !p->pPars->fVerbose ) return; printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] ); printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] ); printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] ); printf( "\n" ); printf( "Gia = %.2f MB ", MemGia ); printf( "Man = %.2f MB ", MemMan ); printf( "Cut = %.2f MB ", MemCuts ); printf( "Map = %.2f MB ", MemMap ); printf( "TT = %.2f MB ", MemTt ); printf( "Total = %.2f MB", MemGia + MemMan + MemCuts + MemMap + MemTt ); printf( "\n" ); if ( 1 ) { int i; for ( i = 0; i <= p->pPars->nLutSize; i++ ) printf( "%d = %d ", i, p->nCutCounts[i] ); if ( p->vTtMem ) printf( "TT = %d (%.2f %%) ", Vec_MemEntryNum(p->vTtMem), 100.0 * Vec_MemEntryNum(p->vTtMem) / p->CutCount[2] ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); } fflush( stdout ); } void Mf_ManComputeCuts( Mf_Man_t * p ) { int i; Gia_ManForEachAndId( p->pGia, i ) Mf_ObjMergeOrder( p, i ); Mf_ManSetMapRefs( p ); Mf_ManPrintStats( p, p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay") ); } /**Function************************************************************* Synopsis [Flow and area.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Mf_CutRef_rec( Mf_Man_t * p, int * pCut ) { int i, Count = Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut)); for ( i = 1; i <= Mf_CutSize(pCut); i++ ) if ( !Mf_ObjMapRefInc(p, pCut[i]) && Mf_ManObj(p, pCut[i])->iCutSet ) Count += Mf_CutRef_rec( p, Mf_ObjCutBest(p, pCut[i]) ); return Count; } int Mf_CutDeref_rec( Mf_Man_t * p, int * pCut ) { int i, Count = Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut)); for ( i = 1; i <= Mf_CutSize(pCut); i++ ) if ( !Mf_ObjMapRefDec(p, pCut[i]) && Mf_ManObj(p, pCut[i])->iCutSet ) Count += Mf_CutDeref_rec( p, Mf_ObjCutBest(p, pCut[i]) ); return Count; } static inline int Mf_CutAreaDerefed( Mf_Man_t * p, int * pCut ) { int Ela1 = Mf_CutRef_rec( p, pCut ); int Ela2 = Mf_CutDeref_rec( p, pCut ); assert( Ela1 == Ela2 ); return Ela1; } static inline float Mf_CutFlow( Mf_Man_t * p, int * pCut, int * pTime ) { Mf_Obj_t * pObj; float Flow = 0; int i, Time = 0; for ( i = 1; i <= Mf_CutSize(pCut); i++ ) { pObj = Mf_ManObj( p, pCut[i] ); Time = Abc_MaxInt( Time, pObj->Delay ); Flow += pObj->Flow; } *pTime = Time + 1; return Flow + Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut)); } static inline void Mf_ObjComputeBestCut( Mf_Man_t * p, int iObj ) { Mf_Obj_t * pBest = Mf_ManObj(p, iObj); int * pCutSet = Mf_ObjCutSet( p, iObj ); int * pCut, * pCutBest = NULL; int Value1 = -1, Value2 = -1; int i, Time = 0, TimeBest = ABC_INFINITY; float Flow, FlowBest = ABC_INFINITY; if ( p->fUseEla && pBest->nMapRefs ) Value1 = Mf_CutDeref_rec( p, Mf_ObjCutBest(p, iObj) ); Mf_SetForEachCut( pCutSet, pCut, i ) { assert( !Mf_CutIsTriv(pCut, iObj) ); assert( Mf_CutSize(pCut) <= p->pPars->nLutSize ); Flow = p->fUseEla ? Mf_CutAreaDerefed(p, pCut) : Mf_CutFlow(p, pCut, &Time); if ( pCutBest == NULL || FlowBest > Flow || (FlowBest == Flow && TimeBest > Time) ) pCutBest = pCut, FlowBest = Flow, TimeBest = Time; } assert( pCutBest != NULL ); if ( p->fUseEla && pBest->nMapRefs ) Value1 = Mf_CutRef_rec( p, pCutBest ); else pBest->nMapRefs = 0; assert( Value1 >= Value2 ); if ( p->fUseEla ) Mf_CutFlow( p, pCutBest, &TimeBest ); pBest->Delay = TimeBest; pBest->Flow = FlowBest / Mf_ManObj(p, iObj)->nFlowRefs; Mf_ObjSetBestCut( pCutSet, pCutBest ); // Mf_CutPrint( Mf_ObjCutBest(p, iObj) ); printf( "\n" ); } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Mf_ManComputeMapping( Mf_Man_t * p ) { int i; Gia_ManForEachAndId( p->pGia, i ) Mf_ObjComputeBestCut( p, i ); Mf_ManSetMapRefs( p ); Mf_ManPrintStats( p, p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay") ); } Gia_Man_t * Mf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) { Mf_Man_t * p; Gia_Man_t * pNew, * pCls; if ( pPars->fGenCnf ) pPars->fCutMin = 1; if ( Gia_ManHasChoices(pGia) ) pPars->fCutMin = 1, pPars->fCoarsen = 0; pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia; p = Mf_ManAlloc( pCls, pPars ); p->pGia0 = pGia; if ( pPars->fVerbose && pPars->fCoarsen ) { printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" ); printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" ); } Mf_ManPrintInit( p ); Mf_ManComputeCuts( p ); for ( p->Iter = 1; p->Iter < p->pPars->nRounds; p->Iter++ ) Mf_ManComputeMapping( p ); p->fUseEla = 1; for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ ) Mf_ManComputeMapping( p ); if ( pPars->fVeryVerbose && pPars->fCutMin ) Vec_MemDumpTruthTables( p->vTtMem, Gia_ManName(p->pGia), pPars->nLutSize ); if ( pPars->fCutMin ) pNew = Mf_ManDeriveMappingGia( p ); else if ( pPars->fCoarsen ) pNew = Mf_ManDeriveMappingCoarse( p ); else pNew = Mf_ManDeriveMapping( p ); if ( p->pPars->fGenCnf ) pGia->pData = Mf_ManDeriveCnf( p, p->pPars->fCnfObjIds, p->pPars->fAddOrCla ); // if ( p->pPars->fGenCnf ) // Mf_ManProfileTruths( p ); Gia_ManMappingVerify( pNew ); Mf_ManPrintQuit( p, pNew ); Mf_ManFree( p ); if ( pCls != pGia ) Gia_ManStop( pCls ); return pNew; } /**Function************************************************************* Synopsis [CNF generation] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Cnf_Dat_t * Mf_ManGenerateCnf( Gia_Man_t * pGia, int nLutSize, int fCnfObjIds, int fAddOrCla, int fVerbose ) { Gia_Man_t * pNew; Jf_Par_t Pars, * pPars = &Pars; assert( nLutSize >= 3 && nLutSize <= 8 ); Mf_ManSetDefaultPars( pPars ); pPars->fGenCnf = 1; pPars->fCoarsen = !fCnfObjIds; pPars->nLutSize = nLutSize; pPars->fCnfObjIds = fCnfObjIds; pPars->fAddOrCla = fAddOrCla; pPars->fVerbose = fVerbose; pNew = Mf_ManPerformMapping( pGia, pPars ); Gia_ManStopP( &pNew ); // Cnf_DataPrint( (Cnf_Dat_t *)pGia->pData, 1 ); return pGia->pData; } void Mf_ManDumpCnf( Gia_Man_t * p, char * pFileName, int nLutSize, int fCnfObjIds, int fAddOrCla, int fVerbose ) { abctime clk = Abc_Clock(); Cnf_Dat_t * pCnf; pCnf = Mf_ManGenerateCnf( p, nLutSize, fCnfObjIds, fAddOrCla, fVerbose ); Cnf_DataWriteIntoFile( pCnf, pFileName, 0, NULL, NULL ); // if ( fVerbose ) { printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } Cnf_DataFree(pCnf); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END