/**CFile**************************************************************** FileName [giaFadds.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Extraction of full-adders.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaFadds.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "gia.h" #include "misc/vec/vecWec.h" #include "misc/tim/tim.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define Dtc_ForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 1 ) #define Dtc_ForEachFadd( vFadds, i ) for ( i = 0; i < Vec_IntSize(vFadds)/5; i++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Derive GIA with boxes containing adder-chains.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManIllustrateBoxes( Gia_Man_t * p ) { Tim_Man_t * pManTime = (Tim_Man_t *)p->pManTime; int nBoxes = Tim_ManBoxNum( pManTime ); int i, k, curCi, curCo, nBoxIns, nBoxOuts; Gia_Obj_t * pObj; // walk through the boxes curCi = Tim_ManPiNum(pManTime); curCo = 0; for ( i = 0; i < nBoxes; i++ ) { nBoxIns = Tim_ManBoxInputNum(pManTime, i); nBoxOuts = Tim_ManBoxOutputNum(pManTime, i); printf( "Box %4d [%d x %d] : ", i, nBoxIns, nBoxOuts ); printf( "Input obj IDs = " ); for ( k = 0; k < nBoxIns; k++ ) { pObj = Gia_ManCo( p, curCo + k ); printf( "%d ", Gia_ObjId(p, pObj) ); } printf( " Output obj IDs = " ); for ( k = 0; k < nBoxOuts; k++ ) { pObj = Gia_ManCi( p, curCi + k ); printf( "%d ", Gia_ObjId(p, pObj) ); } curCo += nBoxIns; curCi += nBoxOuts; printf( "\n" ); } curCo += Tim_ManPoNum(pManTime); // verify counts assert( curCi == Gia_ManCiNum(p) ); assert( curCo == Gia_ManCoNum(p) ); } /**Function************************************************************* Synopsis [Detecting FADDs in the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Dtc_ManCutMergeOne( int * pCut0, int * pCut1, int * pCut ) { int i, k; for ( k = 0; k <= pCut1[0]; k++ ) pCut[k] = pCut1[k]; for ( i = 1; i <= pCut0[0]; i++ ) { for ( k = 1; k <= pCut1[0]; k++ ) if ( pCut0[i] == pCut1[k] ) break; if ( k <= pCut1[0] ) continue; if ( pCut[0] == 3 ) return 0; pCut[1+pCut[0]++] = pCut0[i]; } assert( pCut[0] == 2 || pCut[0] == 3 ); if ( pCut[1] > pCut[2] ) ABC_SWAP( int, pCut[1], pCut[2] ); assert( pCut[1] < pCut[2] ); if ( pCut[0] == 2 ) return 1; if ( pCut[2] > pCut[3] ) ABC_SWAP( int, pCut[2], pCut[3] ); if ( pCut[1] > pCut[2] ) ABC_SWAP( int, pCut[1], pCut[2] ); assert( pCut[1] < pCut[2] ); assert( pCut[2] < pCut[3] ); return 1; } int Dtc_ManCutCheckEqual( Vec_Int_t * vCuts, int * pCutNew ) { int * pList = Vec_IntArray( vCuts ); int i, k, * pCut; Dtc_ForEachCut( pList, pCut, i ) { for ( k = 0; k <= pCut[0]; k++ ) if ( pCut[k] != pCutNew[k] ) break; if ( k > pCut[0] ) return 1; } return 0; } int Dtc_ObjComputeTruth_rec( Gia_Obj_t * pObj ) { int Truth0, Truth1; if ( pObj->Value ) return pObj->Value; assert( Gia_ObjIsAnd(pObj) ); Truth0 = Dtc_ObjComputeTruth_rec( Gia_ObjFanin0(pObj) ); Truth1 = Dtc_ObjComputeTruth_rec( Gia_ObjFanin1(pObj) ); return (pObj->Value = (Gia_ObjFaninC0(pObj) ? ~Truth0 : Truth0) & (Gia_ObjFaninC1(pObj) ? ~Truth1 : Truth1)); } void Dtc_ObjCleanTruth_rec( Gia_Obj_t * pObj ) { if ( !pObj->Value ) return; pObj->Value = 0; if ( !Gia_ObjIsAnd(pObj) ) return; Dtc_ObjCleanTruth_rec( Gia_ObjFanin0(pObj) ); Dtc_ObjCleanTruth_rec( Gia_ObjFanin1(pObj) ); } int Dtc_ObjComputeTruth( Gia_Man_t * p, int iObj, int * pCut, int * pTruth ) { unsigned Truth, Truths[3] = { 0xAA, 0xCC, 0xF0 }; int i; for ( i = 1; i <= pCut[0]; i++ ) Gia_ManObj(p, pCut[i])->Value = Truths[i-1]; Truth = 0xFF & Dtc_ObjComputeTruth_rec( Gia_ManObj(p, iObj) ); Dtc_ObjCleanTruth_rec( Gia_ManObj(p, iObj) ); if ( pTruth ) *pTruth = Truth; if ( Truth == 0x96 || Truth == 0x69 ) return 1; if ( Truth == 0xE8 || Truth == 0xD4 || Truth == 0xB2 || Truth == 0x71 || Truth == 0x17 || Truth == 0x2B || Truth == 0x4D || Truth == 0x8E ) return 2; return 0; } void Dtc_ManCutMerge( Gia_Man_t * p, int iObj, int * pList0, int * pList1, Vec_Int_t * vCuts, Vec_Int_t * vCutsXor, Vec_Int_t * vCutsMaj ) { Vec_Int_t * vTemp; int i, k, c, Type, * pCut0, * pCut1, pCut[4]; Vec_IntFill( vCuts, 2, 1 ); Vec_IntPush( vCuts, iObj ); Dtc_ForEachCut( pList0, pCut0, i ) Dtc_ForEachCut( pList1, pCut1, k ) { if ( !Dtc_ManCutMergeOne(pCut0, pCut1, pCut) ) continue; if ( Dtc_ManCutCheckEqual(vCuts, pCut) ) continue; Vec_IntAddToEntry( vCuts, 0, 1 ); for ( c = 0; c <= pCut[0]; c++ ) Vec_IntPush( vCuts, pCut[c] ); if ( pCut[0] != 3 ) continue; Type = Dtc_ObjComputeTruth( p, iObj, pCut, NULL ); if ( Type == 0 ) continue; vTemp = Type == 1 ? vCutsXor : vCutsMaj; for ( c = 1; c <= pCut[0]; c++ ) Vec_IntPush( vTemp, pCut[c] ); Vec_IntPush( vTemp, iObj ); } } void Dtc_ManComputeCuts( Gia_Man_t * p, Vec_Int_t ** pvCutsXor, Vec_Int_t ** pvCutsMaj, int fVerbose ) { Gia_Obj_t * pObj; int * pList0, * pList1, i, nCuts = 0; Vec_Int_t * vTemp = Vec_IntAlloc( 1000 ); Vec_Int_t * vCutsXor = Vec_IntAlloc( Gia_ManAndNum(p) ); Vec_Int_t * vCutsMaj = Vec_IntAlloc( Gia_ManAndNum(p) ); Vec_Int_t * vCuts = Vec_IntAlloc( 30 * Gia_ManAndNum(p) ); Vec_IntFill( vCuts, Gia_ManObjNum(p), 0 ); Gia_ManCleanValue( p ); Gia_ManForEachCi( p, pObj, i ) { Vec_IntWriteEntry( vCuts, Gia_ObjId(p, pObj), Vec_IntSize(vCuts) ); Vec_IntPush( vCuts, 1 ); Vec_IntPush( vCuts, 1 ); Vec_IntPush( vCuts, Gia_ObjId(p, pObj) ); } Gia_ManForEachAnd( p, pObj, i ) { pList0 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId0(pObj, i)) ); pList1 = Vec_IntEntryP( vCuts, Vec_IntEntry(vCuts, Gia_ObjFaninId1(pObj, i)) ); Dtc_ManCutMerge( p, i, pList0, pList1, vTemp, vCutsXor, vCutsMaj ); Vec_IntWriteEntry( vCuts, i, Vec_IntSize(vCuts) ); Vec_IntAppend( vCuts, vTemp ); nCuts += Vec_IntEntry( vTemp, 0 ); } if ( fVerbose ) printf( "Nodes = %d. Cuts = %d. Cuts/Node = %.2f. Ints/Node = %.2f.\n", Gia_ManAndNum(p), nCuts, 1.0*nCuts/Gia_ManAndNum(p), 1.0*Vec_IntSize(vCuts)/Gia_ManAndNum(p) ); Vec_IntFree( vTemp ); Vec_IntFree( vCuts ); *pvCutsXor = vCutsXor; *pvCutsMaj = vCutsMaj; } Vec_Int_t * Dtc_ManFindCommonCuts( Gia_Man_t * p, Vec_Int_t * vCutsXor, Vec_Int_t * vCutsMaj ) { int * pCuts0 = Vec_IntArray(vCutsXor); int * pCuts1 = Vec_IntArray(vCutsMaj); int * pLimit0 = Vec_IntLimit(vCutsXor); int * pLimit1 = Vec_IntLimit(vCutsMaj); int i; Vec_Int_t * vFadds = Vec_IntAlloc( 1000 ); assert( Vec_IntSize(vCutsXor) % 4 == 0 ); assert( Vec_IntSize(vCutsMaj) % 4 == 0 ); while ( pCuts0 < pLimit0 && pCuts1 < pLimit1 ) { for ( i = 0; i < 3; i++ ) if ( pCuts0[i] != pCuts1[i] ) break; if ( i == 3 ) { for ( i = 0; i < 4; i++ ) Vec_IntPush( vFadds, pCuts0[i] ); Vec_IntPush( vFadds, pCuts1[3] ); pCuts0 += 4; pCuts1 += 4; } else if ( pCuts0[i] < pCuts1[i] ) pCuts0 += 4; else if ( pCuts0[i] > pCuts1[i] ) pCuts1 += 4; } assert( Vec_IntSize(vFadds) % 5 == 0 ); return vFadds; } void Dtc_ManPrintFadds( Vec_Int_t * vFadds ) { int i; Dtc_ForEachFadd( vFadds, i ) { printf( "%6d : ", i ); printf( "%6d ", Vec_IntEntry(vFadds, 5*i+0) ); printf( "%6d ", Vec_IntEntry(vFadds, 5*i+1) ); printf( "%6d ", Vec_IntEntry(vFadds, 5*i+2) ); printf( " -> " ); printf( "%6d ", Vec_IntEntry(vFadds, 5*i+3) ); printf( "%6d ", Vec_IntEntry(vFadds, 5*i+4) ); printf( "\n" ); } } int Dtc_ManCompare( int * pCut0, int * pCut1 ) { if ( pCut0[0] < pCut1[0] ) return -1; if ( pCut0[0] > pCut1[0] ) return 1; if ( pCut0[1] < pCut1[1] ) return -1; if ( pCut0[1] > pCut1[1] ) return 1; if ( pCut0[2] < pCut1[2] ) return -1; if ( pCut0[2] > pCut1[2] ) return 1; return 0; } int Dtc_ManCompare2( int * pCut0, int * pCut1 ) { if ( pCut0[4] < pCut1[4] ) return -1; if ( pCut0[4] > pCut1[4] ) return 1; return 0; } // returns array of 5-tuples containing inputs/sum/cout of each full adder Vec_Int_t * Gia_ManDetectFullAdders( Gia_Man_t * p, int fVerbose ) { Vec_Int_t * vCutsXor, * vCutsMaj, * vFadds; Dtc_ManComputeCuts( p, &vCutsXor, &vCutsMaj, fVerbose ); qsort( Vec_IntArray(vCutsXor), Vec_IntSize(vCutsXor)/4, 16, (int (*)(const void *, const void *))Dtc_ManCompare ); qsort( Vec_IntArray(vCutsMaj), Vec_IntSize(vCutsMaj)/4, 16, (int (*)(const void *, const void *))Dtc_ManCompare ); vFadds = Dtc_ManFindCommonCuts( p, vCutsXor, vCutsMaj ); qsort( Vec_IntArray(vFadds), Vec_IntSize(vFadds)/5, 20, (int (*)(const void *, const void *))Dtc_ManCompare2 ); if ( fVerbose ) printf( "XOR3 cuts = %d. MAJ cuts = %d. Full-adders = %d.\n", Vec_IntSize(vCutsXor)/4, Vec_IntSize(vCutsMaj)/4, Vec_IntSize(vFadds)/5 ); //Dtc_ManPrintFadds( vFadds ); Vec_IntFree( vCutsXor ); Vec_IntFree( vCutsMaj ); return vFadds; } /**Function************************************************************* Synopsis [Map each MAJ into the topmost MAJ of its chain.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // maps MAJ nodes into FADD indexes Vec_Int_t * Gia_ManCreateMap( Gia_Man_t * p, Vec_Int_t * vFadds ) { Vec_Int_t * vMap = Vec_IntStartFull( Gia_ManObjNum(p) ); int i; Dtc_ForEachFadd( vFadds, i ) Vec_IntWriteEntry( vMap, Vec_IntEntry(vFadds, 5*i+4), i ); return vMap; } // find chain length (for each MAJ, how many FADDs are rooted in its first input) int Gia_ManFindChains_rec( Gia_Man_t * p, int iMaj, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Int_t * vLength ) { assert( Vec_IntEntry(vMap, iMaj) >= 0 ); // MAJ if ( Vec_IntEntry(vLength, iMaj) >= 0 ) return Vec_IntEntry(vLength, iMaj); assert( Gia_ObjIsAnd(Gia_ManObj(p, iMaj)) ); { int iFadd = Vec_IntEntry( vMap, iMaj ); int iXor0 = Vec_IntEntry( vFadds, 5*iFadd+0 ); int iXor1 = Vec_IntEntry( vFadds, 5*iFadd+1 ); int iXor2 = Vec_IntEntry( vFadds, 5*iFadd+2 ); int iLen0 = Vec_IntEntry( vMap, iXor0 ) == -1 ? 0 : Gia_ManFindChains_rec( p, iXor0, vFadds, vMap, vLength ); int iLen1 = Vec_IntEntry( vMap, iXor1 ) == -1 ? 0 : Gia_ManFindChains_rec( p, iXor1, vFadds, vMap, vLength ); int iLen2 = Vec_IntEntry( vMap, iXor2 ) == -1 ? 0 : Gia_ManFindChains_rec( p, iXor2, vFadds, vMap, vLength ); int iLen = Abc_MaxInt( iLen0, Abc_MaxInt(iLen1, iLen2) ); if ( iLen0 < iLen ) { if ( iLen == iLen1 ) { ABC_SWAP( int, Vec_IntArray(vFadds)[5*iFadd+0], Vec_IntArray(vFadds)[5*iFadd+1] ); } else if ( iLen == iLen2 ) { ABC_SWAP( int, Vec_IntArray(vFadds)[5*iFadd+0], Vec_IntArray(vFadds)[5*iFadd+2] ); } } Vec_IntWriteEntry( vLength, iMaj, iLen + 1 ); return iLen + 1; } } // for each FADD find the longest chain and reorder its inputs void Gia_ManFindChains( Gia_Man_t * p, Vec_Int_t * vFadds, Vec_Int_t * vMap ) { int i; // for each FADD find the longest chain rooted in it Vec_Int_t * vLength = Vec_IntStartFull( Gia_ManObjNum(p) ); Dtc_ForEachFadd( vFadds, i ) Gia_ManFindChains_rec( p, Vec_IntEntry(vFadds, 5*i+4), vFadds, vMap, vLength ); Vec_IntFree( vLength ); } // collect one carry-chain void Gia_ManCollectOneChain( Gia_Man_t * p, Vec_Int_t * vFadds, int iFaddTop, Vec_Int_t * vMap, Vec_Int_t * vChain ) { int iFadd; Vec_IntClear( vChain ); for ( iFadd = iFaddTop; iFadd >= 0 && !Gia_ObjIsTravIdCurrentId(p, Vec_IntEntry(vFadds, 5*iFadd+3)) && !Gia_ObjIsTravIdCurrentId(p, Vec_IntEntry(vFadds, 5*iFadd+4)); iFadd = Vec_IntEntry(vMap, Vec_IntEntry(vFadds, 5*iFadd+0)) ) { Vec_IntPush( vChain, iFadd ); } Vec_IntReverseOrder( vChain ); } void Gia_ManMarkWithTravId_rec( Gia_Man_t * p, int Id ) { Gia_Obj_t * pObj; if ( Gia_ObjIsTravIdCurrentId(p, Id) ) return; Gia_ObjSetTravIdCurrentId(p, Id); pObj = Gia_ManObj( p, Id ); if ( Gia_ObjIsAnd(pObj) ) Gia_ManMarkWithTravId_rec( p, Gia_ObjFaninId0(pObj, Id) ); if ( Gia_ObjIsAnd(pObj) ) Gia_ManMarkWithTravId_rec( p, Gia_ObjFaninId1(pObj, Id) ); } // returns mapping of each MAJ into the topmost elements of its chain Vec_Wec_t * Gia_ManCollectTopmost( Gia_Man_t * p, Vec_Int_t * vFadds, Vec_Int_t * vMap, int nFaddMin ) { int i, j, iFadd; Vec_Int_t * vChain = Vec_IntAlloc( 100 ); Vec_Wec_t * vChains = Vec_WecAlloc( Vec_IntSize(vFadds)/5 ); // erase elements appearing as FADD inputs Vec_Bit_t * vMarksTop = Vec_BitStart( Vec_IntSize(vFadds)/5 ); Dtc_ForEachFadd( vFadds, i ) if ( (iFadd = Vec_IntEntry(vMap, Vec_IntEntry(vFadds, 5*i+0))) >= 0 ) Vec_BitWriteEntry( vMarksTop, iFadd, 1 ); // compress the remaining ones Gia_ManIncrementTravId( p ); Dtc_ForEachFadd( vFadds, i ) { if ( Vec_BitEntry(vMarksTop, i) ) continue; Gia_ManCollectOneChain( p, vFadds, i, vMap, vChain ); if ( Vec_IntSize(vChain) < nFaddMin ) continue; Vec_IntAppend( Vec_WecPushLevel(vChains), vChain ); Vec_IntForEachEntry( vChain, iFadd, j ) { assert( !Gia_ObjIsTravIdCurrentId(p, Vec_IntEntry(vFadds, 5*iFadd+3)) ); assert( !Gia_ObjIsTravIdCurrentId(p, Vec_IntEntry(vFadds, 5*iFadd+4)) ); Gia_ManMarkWithTravId_rec( p, Vec_IntEntry(vFadds, 5*iFadd+3) ); Gia_ManMarkWithTravId_rec( p, Vec_IntEntry(vFadds, 5*iFadd+4) ); } } // cleanup Vec_BitFree( vMarksTop ); Vec_IntFree( vChain ); return vChains; } // prints chains beginning in majority nodes contained in vTops void Gia_ManPrintChains( Gia_Man_t * p, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Wec_t * vChains ) { Vec_Int_t * vChain; int i, k, iFadd, Count = 0; Vec_WecForEachLevel( vChains, vChain, i ) { Count += Vec_IntSize(vChain); if ( i < 10 ) { printf( "Chain %4d : %4d ", i, Vec_IntSize(vChain) ); Vec_IntForEachEntry( vChain, iFadd, k ) { printf( "%d(%d) ", iFadd, Vec_IntEntry(vFadds, 5*iFadd+4) ); if ( k != Vec_IntSize(vChain) - 1 ) printf( "-> " ); if ( k > 6 ) { printf( "..." ); break; } } printf( "\n" ); } else if ( i == 10 ) printf( "...\n" ); } printf( "Total chains = %d. Total full-adders = %d.\n", Vec_WecSize(vChains), Count ); } // map SUM bits and topmost MAJ into topmost FADD number Vec_Int_t * Gia_ManFindMapping( Gia_Man_t * p, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Wec_t * vChains ) { Vec_Int_t * vChain; int i, k, iFadd = -1; Vec_Int_t * vMap2Chain = Vec_IntStartFull( Gia_ManObjNum(p) ); Vec_WecForEachLevel( vChains, vChain, i ) { assert( Vec_IntSize(vChain) > 0 ); Vec_IntForEachEntry( vChain, iFadd, k ) { //printf( "Chain %d: setting SUM %d (obj %d)\n", i, k, Vec_IntEntry(vFadds, 5*iFadd+3) ); assert( Vec_IntEntry(vMap2Chain, Vec_IntEntry(vFadds, 5*iFadd+3)) == -1 ); Vec_IntWriteEntry( vMap2Chain, Vec_IntEntry(vFadds, 5*iFadd+3), i ); } //printf( "Chain %d: setting CARRY (obj %d)\n", i, Vec_IntEntry(vFadds, 5*iFadd+4) ); assert( Vec_IntEntry(vMap2Chain, Vec_IntEntry(vFadds, 5*iFadd+4)) == -1 ); Vec_IntWriteEntry( vMap2Chain, Vec_IntEntry(vFadds, 5*iFadd+4), i ); } return vMap2Chain; } /**Function************************************************************* Synopsis [Derive GIA with boxes containing adder-chains.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Gia_ManCollectTruthTables( Gia_Man_t * p, Vec_Int_t * vFadds ) { int i, k, Type, Truth, pCut[4] = {3}; Vec_Int_t * vTruths = Vec_IntAlloc( 2*Vec_IntSize(vFadds)/5 ); Gia_ManCleanValue( p ); Dtc_ForEachFadd( vFadds, i ) { for ( k = 0; k < 3; k++ ) pCut[k+1] = Vec_IntEntry( vFadds, 5*i+k ); Type = Dtc_ObjComputeTruth( p, Vec_IntEntry(vFadds, 5*i+3), pCut, &Truth ); assert( Type == 1 ); Vec_IntPush( vTruths, Truth ); Type = Dtc_ObjComputeTruth( p, Vec_IntEntry(vFadds, 5*i+4), pCut, &Truth ); assert( Type == 2 ); Vec_IntPush( vTruths, Truth ); } return vTruths; } float * Gia_ManGenerateDelayTableFloat( int nIns, int nOuts ) { int i, Total = nIns * nOuts; float * pDelayTable = ABC_ALLOC( float, Total + 3 ); pDelayTable[0] = 0; pDelayTable[1] = nIns; pDelayTable[2] = nOuts; for ( i = 0; i < Total; i++ ) pDelayTable[i+3] = 1; pDelayTable[i+3 - nIns] = -ABC_INFINITY; return pDelayTable; } Tim_Man_t * Gia_ManGenerateTim( int nPis, int nPos, int nBoxes, int nIns, int nOuts ) { Tim_Man_t * pMan; int i, curPi, curPo; Vec_Ptr_t * vDelayTables = Vec_PtrAlloc( 1 ); Vec_PtrPush( vDelayTables, Gia_ManGenerateDelayTableFloat(nIns, nOuts) ); pMan = Tim_ManStart( nPis + nOuts * nBoxes, nPos + nIns * nBoxes ); Tim_ManSetDelayTables( pMan, vDelayTables ); curPi = nPis; curPo = 0; for ( i = 0; i < nBoxes; i++ ) { Tim_ManCreateBox( pMan, curPo, nIns, curPi, nOuts, 0 ); curPi += nOuts; curPo += nIns; } curPo += nPos; assert( curPi == Tim_ManCiNum(pMan) ); assert( curPo == Tim_ManCoNum(pMan) ); //Tim_ManPrint( pMan ); return pMan; } Gia_Man_t * Gia_ManGenerateExtraAig( int nBoxes, int nIns, int nOuts ) { Gia_Man_t * pNew = Gia_ManStart( nBoxes * 20 ); int i, k, pInLits[16], pOutLits[16]; assert( nIns < 16 && nOuts < 16 ); for ( i = 0; i < nIns; i++ ) pInLits[i] = Gia_ManAppendCi( pNew ); pOutLits[0] = Gia_ManAppendXor( pNew, Gia_ManAppendXor(pNew, pInLits[0], pInLits[1]), pInLits[2] ); pOutLits[1] = Gia_ManAppendMaj( pNew, pInLits[0], pInLits[1], pInLits[2] ); for ( i = 0; i < nBoxes; i++ ) for ( k = 0; k < nOuts; k++ ) Gia_ManAppendCo( pNew, pOutLits[k] ); return pNew; } void Gia_ManDupFadd( Gia_Man_t * pNew, Gia_Man_t * p, Vec_Int_t * vChain, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Wec_t * vChains, Vec_Int_t * vMap2Chain, Vec_Int_t * vTruths ) { extern void Gia_ManDupWithFaddBoxes_rec( Gia_Man_t * pNew, Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Wec_t * vChains, Vec_Int_t * vMap2Chain, Vec_Int_t * vTruths ); int i, k, iFadd, iCiLit, pLits[3]; Gia_Obj_t * pObj; // construct FADD inputs Vec_IntForEachEntry( vChain, iFadd, i ) for ( k = 0; k < 3; k++ ) { if ( i && !k ) continue; pObj = Gia_ManObj( p, Vec_IntEntry(vFadds, 5*iFadd+k) ); Gia_ManDupWithFaddBoxes_rec( pNew, p, pObj, vFadds, vMap, vChains, vMap2Chain, vTruths ); } // construct boxes iCiLit = 0; Vec_IntForEachEntry( vChain, iFadd, i ) { int iXorTruth = Vec_IntEntry( vTruths, 2*iFadd+0 ); int iMajTruth = Vec_IntEntry( vTruths, 2*iFadd+1 ); for ( k = 0; k < 3; k++ ) { pObj = Gia_ManObj( p, Vec_IntEntry(vFadds, 5*iFadd+k) ); pLits[k] = (!k && iCiLit) ? iCiLit : pObj->Value; assert( pLits[k] >= 0 ); } // normalize truth table // if ( Truth == 0xE8 || Truth == 0xD4 || Truth == 0xB2 || Truth == 0x71 || // Truth == 0x17 || Truth == 0x2B || Truth == 0x4D || Truth == 0x8E ) if ( iMajTruth == 0x4D ) pLits[0] = Abc_LitNot(pLits[0]), iMajTruth = 0x8E, iXorTruth = 0xFF & ~iXorTruth; else if ( iMajTruth == 0xD4 ) pLits[0] = Abc_LitNot(pLits[0]), iMajTruth = 0xE8, iXorTruth = 0xFF & ~iXorTruth; else if ( iMajTruth == 0x2B ) pLits[1] = Abc_LitNot(pLits[1]), iMajTruth = 0x8E, iXorTruth = 0xFF & ~iXorTruth; else if ( iMajTruth == 0xB2 ) pLits[1] = Abc_LitNot(pLits[1]), iMajTruth = 0xE8, iXorTruth = 0xFF & ~iXorTruth; if ( iMajTruth == 0x8E ) pLits[2] = Abc_LitNot(pLits[2]), iMajTruth = 0xE8, iXorTruth = 0xFF & ~iXorTruth; else if ( iMajTruth == 0x71 ) pLits[2] = Abc_LitNot(pLits[2]), iMajTruth = 0x17, iXorTruth = 0xFF & ~iXorTruth; else assert( iMajTruth == 0xE8 || iMajTruth == 0x17 ); // normalize carry-in if ( Abc_LitIsCompl(pLits[0]) ) { for ( k = 0; k < 3; k++ ) pLits[k] = Abc_LitNot(pLits[k]); iXorTruth = 0xFF & ~iXorTruth; iMajTruth = 0xFF & ~iMajTruth; } // add COs assert( !Abc_LitIsCompl(pLits[0]) ); for ( k = 0; k < 3; k++ ) Gia_ManAppendCo( pNew, pLits[k] ); // create CI assert( iXorTruth == 0x96 || iXorTruth == 0x69 ); pObj = Gia_ManObj( p, Vec_IntEntry(vFadds, 5*iFadd+3) ); pObj->Value = Abc_LitNotCond( Gia_ManAppendCi(pNew), (int)(iXorTruth == 0x69) ); // create CI assert( iMajTruth == 0xE8 || iMajTruth == 0x17 ); iCiLit = Abc_LitNotCond( Gia_ManAppendCi(pNew), (int)(iMajTruth == 0x17) ); } // assign carry out assert( iFadd == Vec_IntEntryLast(vChain) ); pObj = Gia_ManObj( p, Vec_IntEntry(vFadds, 5*iFadd+4) ); pObj->Value = iCiLit; } void Gia_ManDupWithFaddBoxes_rec( Gia_Man_t * pNew, Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vFadds, Vec_Int_t * vMap, Vec_Wec_t * vChains, Vec_Int_t * vMap2Chain, Vec_Int_t * vTruths ) { int iChain; if ( ~pObj->Value ) return; assert( Gia_ObjIsAnd(pObj) ); iChain = Vec_IntEntry( vMap2Chain, Gia_ObjId(p, pObj) ); /* assert( iChain == -1 ); if ( iChain >= 0 ) { Gia_ManDupFadd( pNew, p, Vec_WecEntry(vChains, iChain), vFadds, vMap, vChains, vMap2Chain, vTruths ); assert( ~pObj->Value ); return; } */ Gia_ManDupWithFaddBoxes_rec( pNew, p, Gia_ObjFanin0(pObj), vFadds, vMap, vChains, vMap2Chain, vTruths ); Gia_ManDupWithFaddBoxes_rec( pNew, p, Gia_ObjFanin1(pObj), vFadds, vMap, vChains, vMap2Chain, vTruths ); pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); } Gia_Man_t * Gia_ManDupWithNaturalBoxes( Gia_Man_t * p, int nFaddMin, int fVerbose ) { abctime clk = Abc_Clock(); Gia_Man_t * pNew;//, * pTemp; Vec_Int_t * vFadds, * vMap, * vMap2Chain, * vTruths, * vChain; Vec_Wec_t * vChains; Gia_Obj_t * pObj; int i, nBoxes; if ( Gia_ManBoxNum(p) > 0 ) { printf( "Currently natural carry-chains cannot be detected when boxes are present.\n" ); return NULL; } assert( Gia_ManBoxNum(p) == 0 ); // detect FADDs vFadds = Gia_ManDetectFullAdders( p, fVerbose ); assert( Vec_IntSize(vFadds) % 5 == 0 ); // map MAJ into its FADD vMap = Gia_ManCreateMap( p, vFadds ); // for each FADD, find the longest chain and reorder its inputs Gia_ManFindChains( p, vFadds, vMap ); // returns the set of topmost MAJ nodes vChains = Gia_ManCollectTopmost( p, vFadds, vMap, nFaddMin ); if ( fVerbose ) Gia_ManPrintChains( p, vFadds, vMap, vChains ); if ( Vec_WecSize(vChains) == 0 ) { Vec_IntFree( vFadds ); Vec_IntFree( vMap ); Vec_WecFree( vChains ); return Gia_ManDup( p ); } // returns mapping of each MAJ into the topmost elements of its chain vMap2Chain = Gia_ManFindMapping( p, vFadds, vMap, vChains ); // compute truth tables for FADDs vTruths = Gia_ManCollectTruthTables( p, vFadds ); if ( fVerbose ) Abc_PrintTime( 1, "Carry-chain detection time", Abc_Clock() - clk ); // duplicate clk = Abc_Clock(); Gia_ManFillValue( p ); pNew = Gia_ManStart( Gia_ManObjNum(p) ); pNew->pName = Abc_UtilStrsav( p->pName ); pNew->pSpec = Abc_UtilStrsav( p->pSpec ); Gia_ManConst0(p)->Value = 0; Gia_ManForEachCi( p, pObj, i ) pObj->Value = Gia_ManAppendCi( pNew ); Vec_WecForEachLevel( vChains, vChain, i ) Gia_ManDupFadd( pNew, p, vChain, vFadds, vMap, vChains, vMap2Chain, vTruths ); Gia_ManForEachCo( p, pObj, i ) Gia_ManDupWithFaddBoxes_rec( pNew, p, Gia_ObjFanin0(pObj), vFadds, vMap, vChains, vMap2Chain, vTruths ); Gia_ManForEachCo( p, pObj, i ) Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); Gia_ManSetRegNum( pNew, Gia_ManRegNum(p) ); if ( Gia_ManRegNum(p) ) { if ( fVerbose ) printf( "Warning: Sequential design is coverted into combinational one by adding white boxes.\n" ); pNew->nRegs = 0; } assert( !Gia_ManHasDangling(pNew) ); // cleanup Vec_IntFree( vFadds ); Vec_IntFree( vMap ); Vec_WecFree( vChains ); Vec_IntFree( vMap2Chain ); Vec_IntFree( vTruths ); // other information nBoxes = (Gia_ManCiNum(pNew) - Gia_ManCiNum(p)) / 2; assert( nBoxes == (Gia_ManCoNum(pNew) - Gia_ManCoNum(p)) / 3 ); pNew->pManTime = Gia_ManGenerateTim( Gia_ManCiNum(p), Gia_ManCoNum(p), nBoxes, 3, 2 ); pNew->pAigExtra = Gia_ManGenerateExtraAig( nBoxes, 3, 2 ); /* // normalize pNew = Gia_ManDupNormalize( pTemp = pNew ); pNew->pManTime = pTemp->pManTime; pTemp->pManTime = NULL; pNew->pAigExtra = pTemp->pAigExtra; pTemp->pAigExtra = NULL; Gia_ManStop( pTemp ); */ //pNew = Gia_ManDupCollapse( pTemp = pNew, pNew->pAigExtra, NULL ); //Gia_ManStop( pTemp ); //Gia_ManIllustrateBoxes( pNew ); if ( fVerbose ) Abc_PrintTime( 1, "AIG with boxes construction time", Abc_Clock() - clk ); return pNew; } /**Function************************************************************* Synopsis [Converting AIG with annotated carry-chains into AIG with boxes.] Description [Assumes that annotations are pObj->fMark0 or pObj->fMark1. Only one of these can be set to 1. If fMark0 (fMark1) is set to 1, the first (second) input of an AND-gate is chained.] SideEffects [] SeeAlso [] ***********************************************************************/ int Gia_ObjFanin0CopyCarry( Vec_Int_t * vCarries, Gia_Obj_t * pObj, int Id ) { if ( vCarries == NULL || Vec_IntEntry(vCarries, Gia_ObjFaninId0(pObj, Id)) == -1 ) return Gia_ObjFanin0Copy(pObj); return Abc_LitNotCond( Vec_IntEntry(vCarries, Gia_ObjFaninId0(pObj, Id)), Gia_ObjFaninC0(pObj) ); } int Gia_ObjFanin1CopyCarry( Vec_Int_t * vCarries, Gia_Obj_t * pObj, int Id ) { if ( vCarries == NULL || Vec_IntEntry(vCarries, Gia_ObjFaninId1(pObj, Id)) == -1 ) return Gia_ObjFanin1Copy(pObj); return Abc_LitNotCond( Vec_IntEntry(vCarries, Gia_ObjFaninId1(pObj, Id)), Gia_ObjFaninC1(pObj) ); } Gia_Man_t * Gia_ManDupWithArtificalFaddBoxes( Gia_Man_t * p, int fUseFanout ) { Gia_Man_t * pNew; Gia_Obj_t * pObj; int nBoxes = Gia_ManBoxNum(p); int i, nRealPis, nRealPos; Vec_Int_t * vCarries = NULL; // make sure two chains do not overlap Gia_ManCleanPhase( p ); Gia_ManForEachCi( p, pObj, i ) assert( !pObj->fMark0 && !pObj->fMark1 ); Gia_ManForEachCo( p, pObj, i ) assert( !pObj->fMark0 && !pObj->fMark1 ); Gia_ManForEachAnd( p, pObj, i ) { assert( !pObj->fMark0 || !pObj->fMark1 ); if ( pObj->fMark0 ) { assert( Gia_ObjFanin0(pObj)->fPhase == 0 ); Gia_ObjFanin0(pObj)->fPhase = 1; } if ( pObj->fMark1 ) { assert( Gia_ObjFanin1(pObj)->fPhase == 0 ); Gia_ObjFanin1(pObj)->fPhase = 1; } } // create mapping for carry-chains if ( !fUseFanout ) vCarries = Vec_IntStartFull( Gia_ManObjNum(p) ); // create references and discount carries if ( vCarries ) { Gia_ManCreateRefs( p ); Gia_ManForEachAnd( p, pObj, i ) if ( pObj->fMark0 ) Gia_ObjRefFanin0Dec( p, pObj ); else if ( pObj->fMark1 ) Gia_ObjRefFanin1Dec( p, pObj ); } // if AIG already has (natural) FADD boxes, it should not un-normalized Gia_ManFillValue( p ); pNew = Gia_ManStart( Gia_ManObjNum(p) ); pNew->pName = Abc_UtilStrsav( p->pName ); pNew->pSpec = Abc_UtilStrsav( p->pSpec ); Gia_ManConst0(p)->Value = 0; Gia_ManForEachObj1( p, pObj, i ) { if ( Gia_ObjIsCi(pObj) ) pObj->Value = Gia_ManAppendCi( pNew ); else if ( Gia_ObjIsCo(pObj) ) pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); else if ( !pObj->fMark0 && !pObj->fMark1 ) // AND-gate pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); else // AND-gate with chain { int iCiLit, iOtherLit, iLit0, iLit1, iLit2; assert( pObj->fMark0 != pObj->fMark1 ); iCiLit = pObj->fMark0 ? Gia_ObjFanin0CopyCarry(vCarries, pObj, i) : Gia_ObjFanin1CopyCarry(vCarries, pObj, i); iOtherLit = pObj->fMark0 ? Gia_ObjFanin1Copy(pObj) : Gia_ObjFanin0Copy(pObj); assert( iCiLit >= 0 && iOtherLit >= 0 ); iLit0 = Abc_LitNotCond( iCiLit, Abc_LitIsCompl(iCiLit) ); iLit1 = Abc_LitNotCond( iOtherLit, Abc_LitIsCompl(iCiLit) ); iLit2 = Abc_LitNotCond( 0, Abc_LitIsCompl(iCiLit) ); // add COs assert( !Abc_LitIsCompl(iLit0) ); Gia_ManAppendCo( pNew, iLit0 ); Gia_ManAppendCo( pNew, iLit1 ); Gia_ManAppendCo( pNew, iLit2 ); // add CI (unused sum bit) Gia_ManAppendCi(pNew); // add CI (carry bit) pObj->Value = Abc_LitNotCond( Gia_ManAppendCi(pNew), Abc_LitIsCompl(iCiLit) ); if ( vCarries && pObj->fPhase ) { Vec_IntWriteEntry( vCarries, i, pObj->Value ); if ( Gia_ObjRefNum(p, pObj) > 0 ) pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); } nBoxes++; } } Gia_ManCleanPhase( p ); Vec_IntFreeP( &vCarries ); ABC_FREE( p->pRefs ); assert( !Gia_ManHasDangling(pNew) ); // other information // nBoxes += (Gia_ManCiNum(pNew) - Gia_ManCiNum(p)) / 2; // assert( nBoxes == Gia_ManBoxNum(p) + (Gia_ManCoNum(pNew) - Gia_ManCoNum(p)) / 3 ); nRealPis = Gia_ManBoxNum(p) ? Tim_ManPiNum((Tim_Man_t *)p->pManTime) : Gia_ManCiNum(p); nRealPos = Gia_ManBoxNum(p) ? Tim_ManPoNum((Tim_Man_t *)p->pManTime) : Gia_ManCoNum(p); pNew->pManTime = Gia_ManGenerateTim( nRealPis, nRealPos, nBoxes, 3, 2 ); pNew->pAigExtra = Gia_ManGenerateExtraAig( nBoxes, 3, 2 ); // optionally normalize the AIG return pNew; } Gia_Man_t * Gia_ManDupWithArtificalFaddBoxesTest( Gia_Man_t * p ) { Gia_Man_t * pNew; Gia_Obj_t * pObj; int i; // label some and-gates Gia_ManCleanMark01( p ); Gia_ManForEachAnd( p, pObj, i ) { pObj->fMark0 = i % 5; pObj->fMark1 = i % 7; if ( pObj->fMark0 && pObj->fMark1 ) pObj->fMark0 = pObj->fMark1 = 0; } // output new AIG pNew = Gia_ManDupWithArtificalFaddBoxes( p, 0 ); Gia_ManCleanMark01( p ); return pNew; } /**Function************************************************************* Synopsis [Adds artificial carry chains to the manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // computes AIG delay information when boxes are used int Gia_ManFindAnnotatedDelay( Gia_Man_t * p, int DelayC, int * pnBoxes, int fIgnoreBoxDelays ) { Gia_Obj_t * pObj; int nRealPis = Gia_ManBoxNum(p) ? Tim_ManPiNum((Tim_Man_t *)p->pManTime) : Gia_ManCiNum(p); int * pDelays = Vec_IntArray(p->vLevels); int i, k, iBox, iBoxOutId, Delay, Delay0, Delay1, DelayMax = 0, nBoxes = 0; Vec_IntFill( p->vLevels, Gia_ManObjNum(p), 0 ); Gia_ManForEachObj1( p, pObj, i ) { if ( Gia_ObjIsCi(pObj) ) { if ( fIgnoreBoxDelays ) continue; // check if it is real PI iBoxOutId = Gia_ObjCioId(pObj) - nRealPis; if ( iBoxOutId < 0 ) continue; // if it is a box output, find box number iBox = iBoxOutId / 2; assert( iBox < Gia_ManBoxNum(p) ); // check find the maximum delay of the box inputs Delay = 0; for ( k = 0; k < 3; k++ ) { int Id = Gia_ObjId( p, Gia_ManCo(p, iBox*3+k) ); assert( Id < i ); Delay = Abc_MaxInt( Delay, pDelays[Id] ); } // consider outputs if ( iBoxOutId & 1 ) // carry output Delay += DelayC; else // sum output Delay += 100; pDelays[i] = Delay; continue; } if ( Gia_ObjIsCo(pObj) ) { pDelays[i] = pDelays[Gia_ObjFaninId0(pObj, i)]; DelayMax = Abc_MaxInt( DelayMax, pDelays[i] ); continue; } assert( !pObj->fMark0 || !pObj->fMark1 ); Delay0 = pDelays[Gia_ObjFaninId0(pObj, i)]; Delay1 = pDelays[Gia_ObjFaninId1(pObj, i)]; if ( pObj->fMark0 ) { Delay = Abc_MaxInt( Delay0 + DelayC, Delay1 + 100 ); nBoxes++; } else if ( pObj->fMark1 ) { Delay = Abc_MaxInt( Delay1 + DelayC, Delay0 + 100 ); nBoxes++; } else Delay = Abc_MaxInt( Delay0 + 100, Delay1 + 100 ); pDelays[i] = Delay; } if ( pnBoxes ) *pnBoxes = nBoxes; return DelayMax; } // check if the object is already used in some chain static inline int Gia_ObjIsUsed( Gia_Obj_t * pObj ) { return pObj->fMark0 || pObj->fMark1 || pObj->fPhase; } // finds internal node that can begin a new chain int Gia_ManFindChainStart( Gia_Man_t * p ) { Gia_Obj_t * pObj; int * pDelays = Vec_IntArray(p->vLevels); int i, iMax = -1, DelayMax = 0; Gia_ManForEachAnd( p, pObj, i ) { if ( Gia_ObjIsUsed(pObj) ) continue; if ( DelayMax > pDelays[i] ) continue; DelayMax = pDelays[i]; iMax = i; } return iMax; } // finds a sequence of internal nodes that creates a new chain int Gia_ManFindPath( Gia_Man_t * p, int DelayC, int nPathMin, int nPathMax, Vec_Int_t * vPath ) { Gia_Obj_t * pObj, * pFanin0, * pFanin1; int * pDelays = Vec_IntArray(p->vLevels); int i, iLit, iMax = Gia_ManFindChainStart( p ); if ( iMax == -1 ) return -1; Vec_IntClear( vPath ); pObj = Gia_ManObj(p, iMax); assert( Gia_ObjIsAnd(pObj) ); while ( Gia_ObjIsAnd(pObj) ) { assert( !Gia_ObjIsUsed(pObj) ); pFanin0 = Gia_ObjFanin0(pObj); pFanin1 = Gia_ObjFanin1(pObj); if ( Gia_ObjIsUsed(pFanin0) && Gia_ObjIsUsed(pFanin1) ) break; if ( Gia_ObjIsUsed(pFanin0) ) { Vec_IntPush( vPath, Abc_Var2Lit(Gia_ObjId(p, pObj), 1) ); pObj = pFanin1; } else if ( Gia_ObjIsUsed(pFanin1) ) { Vec_IntPush( vPath, Abc_Var2Lit(Gia_ObjId(p, pObj), 0) ); pObj = pFanin0; } else { if ( pDelays[Gia_ObjId(p, pFanin1)] > pDelays[Gia_ObjId(p, pFanin0)] ) { Vec_IntPush( vPath, Abc_Var2Lit(Gia_ObjId(p, pObj), 1) ); pObj = pFanin1; } else { Vec_IntPush( vPath, Abc_Var2Lit(Gia_ObjId(p, pObj), 0) ); pObj = pFanin0; } } } if ( Vec_IntSize(vPath) < nPathMin ) { Gia_ManObj(p, iMax)->fPhase = 1; return 0; } // label nodes if ( Vec_IntSize(vPath) > nPathMax ) Vec_IntShrink( vPath, nPathMax ); Vec_IntForEachEntry( vPath, iLit, i ) { pObj = Gia_ManObj( p, Abc_Lit2Var(iLit) ); if ( Abc_LitIsCompl(iLit) ) { assert( pObj->fMark1 == 0 ); pObj->fMark1 = 1; assert( Gia_ObjFanin1(pObj)->fPhase == 0 ); Gia_ObjFanin1(pObj)->fPhase = 1; } else { assert( pObj->fMark0 == 0 ); pObj->fMark0 = 1; assert( Gia_ObjFanin0(pObj)->fPhase == 0 ); Gia_ObjFanin0(pObj)->fPhase = 1; } } return Vec_IntSize(vPath); } // iteratively create the given number of chains int Gia_ManIteratePaths( Gia_Man_t * p, int DelayC, int nPathMin, int nPathMax, int nPathLimit, int fIgnoreBoxDelays, int fVerbose ) { Gia_Obj_t * pObj; Vec_Int_t * vPath = Vec_IntAlloc( 100 ); int i, RetValue, nBoxes, MaxDelay, nPaths = 0; assert( p->vLevels == NULL ); p->vLevels = Vec_IntStart( Gia_ManObjNum(p) ); Gia_ManCleanMark01( p ); Gia_ManCleanPhase( p ); Gia_ManForEachCi( p, pObj, i ) pObj->fPhase = 1; if ( fVerbose ) printf( "Running path detection: BoxDelay = %d, PathMin = %d, PathMax = %d, PathLimit = %d.\n", DelayC, nPathMin, nPathMax, nPathLimit ); for ( i = 0; i < nPathLimit; i++ ) { MaxDelay = Gia_ManFindAnnotatedDelay( p, DelayC, &nBoxes, fIgnoreBoxDelays ); RetValue = Gia_ManFindPath( p, DelayC, nPathMin, nPathMax, vPath ); if ( RetValue == -1 ) break; nPaths += (RetValue > 0); if ( fVerbose ) printf( "Iter %5d : Paths = %2d. Boxes = %2d. Total boxes = %6d. Max delay = %5d.\n", i, nPaths, RetValue, nBoxes, MaxDelay ); } Vec_IntFree( vPath ); Vec_IntFreeP( &p->vLevels ); Gia_ManCleanPhase( p ); return 1; } // annotate artificial chains and then put them into boxes Gia_Man_t * Gia_ManDupWithArtificialBoxes( Gia_Man_t * p, int DelayC, int nPathMin, int nPathMax, int nPathLimit, int fUseFanout, int fIgnoreBoxDelays, int fVerbose ) { Gia_Man_t * pNew; /* if ( Gia_ManBoxNum(p) > 0 ) { printf( "Currently artifical carry-chains cannot be detected when natural ones are present.\n" ); return NULL; } */ Gia_ManIteratePaths( p, DelayC, nPathMin, nPathMax, nPathLimit, fIgnoreBoxDelays, fVerbose ); pNew = Gia_ManDupWithArtificalFaddBoxes( p, fUseFanout ); Gia_ManCleanMark01( p ); return pNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END