/************************************************************************************************** MiniSat -- Copyright (c) 2005, Niklas Sorensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ // Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko #ifndef ABC__sat__bsat__satSolver_h #define ABC__sat__bsat__satSolver_h #include #include #include #include #include "satVec.h" #include "satClause.h" ABC_NAMESPACE_HEADER_START //#define USE_FLOAT_ACTIVITY //================================================================================================= // Public interface: struct sat_solver_t; typedef struct sat_solver_t sat_solver; extern sat_solver* sat_solver_new(void); extern void sat_solver_delete(sat_solver* s); extern int sat_solver_addclause(sat_solver* s, lit* begin, lit* end); extern int sat_solver_clause_new(sat_solver* s, lit* begin, lit* end, int learnt); extern int sat_solver_simplify(sat_solver* s); extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern void sat_solver_restart( sat_solver* s ); extern void sat_solver_rollback( sat_solver* s ); extern int sat_solver_nvars(sat_solver* s); extern int sat_solver_nclauses(sat_solver* s); extern int sat_solver_nconflicts(sat_solver* s); extern double sat_solver_memory(sat_solver* s); extern int sat_solver_count_assigned(sat_solver* s); extern void sat_solver_setnvars(sat_solver* s,int n); extern int sat_solver_get_var_value(sat_solver* s, int v); extern void Sat_SolverWriteDimacs( sat_solver * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars ); extern void Sat_SolverPrintStats( FILE * pFile, sat_solver * p ); extern int * Sat_SolverGetModel( sat_solver * p, int * pVars, int nVars ); extern void Sat_SolverDoubleClauses( sat_solver * p, int iVar ); // trace recording extern void Sat_SolverTraceStart( sat_solver * pSat, char * pName ); extern void Sat_SolverTraceStop( sat_solver * pSat ); extern void Sat_SolverTraceWrite( sat_solver * pSat, int * pBeg, int * pEnd, int fRoot ); // clause storage extern void sat_solver_store_alloc( sat_solver * s ); extern void sat_solver_store_write( sat_solver * s, char * pFileName ); extern void sat_solver_store_free( sat_solver * s ); extern void sat_solver_store_mark_roots( sat_solver * s ); extern void sat_solver_store_mark_clauses_a( sat_solver * s ); extern void * sat_solver_store_release( sat_solver * s ); //================================================================================================= // Solver representation: //struct clause_t; //typedef struct clause_t clause; struct varinfo_t; typedef struct varinfo_t varinfo; struct sat_solver_t { int size; // nof variables int cap; // size of varmaps int qhead; // Head index of queue. int qtail; // Tail index of queue. // clauses Sat_Mem_t Mem; int hLearnts; // the first learnt clause int hBinary; // the special binary clause clause * binary; veci* wlists; // watcher lists veci act_clas; // contain clause activities // rollback int iVarPivot; // the pivot for variables int iTrailPivot; // the pivot for trail int hProofPivot; // the pivot for proof records // activities #ifdef USE_FLOAT_ACTIVITY double var_inc; // Amount to bump next variable with. double var_decay; // INVERSE decay factor for variable activity: stores 1/decay. float cla_inc; // Amount to bump next clause with. float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay. double* activity; // A heuristic measurement of the activity of a variable. #else int var_inc; // Amount to bump next variable with. int var_inc2; // Amount to bump next variable with. int cla_inc; // Amount to bump next clause with. unsigned* activity; // A heuristic measurement of the activity of a variable. unsigned* activity2; // backup variable activity #endif char * pFreqs; // how many times this variable was assigned a value int nVarUsed; // varinfo * vi; // variable information int* levels; // char* assigns; // Current values of variables. char* polarity; // char* tags; // char* loads; // int* orderpos; // Index in variable order. int* reasons; // lit* trail; veci tagged; // (contains: var) veci stack; // (contains: var) veci order; // Variable order. (heap) (contains: var) veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int) // veci model; // If problem is solved, this vector contains the model (contains: lbool). int * model; // If problem is solved, this vector contains the model (contains: lbool). veci conf_final; // If problem is unsatisfiable (possibly under assumptions), // this vector represent the final conflict clause expressed in the assumptions. int root_level; // Level of first proper decision. int simpdb_assigns;// Number of top-level assignments at last 'simplifyDB()'. int simpdb_props; // Number of propagations before next 'simplifyDB()'. double random_seed; double progress_estimate; int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything int fVerbose; stats_t stats; int nLearntMax; // max number of learned clauses int nLearntStart; // starting learned clause limit int nLearntDelta; // delta of learned clause limit int nLearntRatio; // ratio percentage of learned clauses int nDBreduces; // number of DB reductions ABC_INT64_T nConfLimit; // external limit on the number of conflicts ABC_INT64_T nInsLimit; // external limit on the number of implications abctime nRuntimeLimit; // external limit on runtime veci act_vars; // variables whose activity has changed double* factors; // the activity factors int nRestarts; // the number of local restarts int nCalls; // the number of local restarts int nCalls2; // the number of local restarts veci unit_lits; // variables whose activity has changed veci pivot_vars; // pivot variables int fSkipSimplify; // set to one to skip simplification of the clause database int fNotUseRandom; // do not allow random decisions with a fixed probability int * pGlobalVars; // for experiments with global vars during interpolation // clause store void * pStore; int fSolved; // trace recording FILE * pFile; int nClauses; int nRoots; veci temp_clause; // temporary storage for a CNF clause // CNF loading void * pCnfMan; // external CNF manager int(*pCnfFunc)(void * p, int); // external callback }; static inline clause * clause_read( sat_solver * s, cla h ) { return Sat_MemClauseHand( &s->Mem, h ); } static int sat_solver_var_value( sat_solver* s, int v ) { assert( v >= 0 && v < s->size ); return (int)(s->model[v] == l_True); } static int sat_solver_var_literal( sat_solver* s, int v ) { assert( v >= 0 && v < s->size ); return toLitCond( v, s->model[v] != l_True ); } static void sat_solver_act_var_clear(sat_solver* s) { int i; for (i = 0; i < s->size; i++) s->activity[i] = 0.0; s->var_inc = 1.0; } static void sat_solver_compress(sat_solver* s) { if ( s->qtail != s->qhead ) { int RetValue = sat_solver_simplify(s); assert( RetValue != 0 ); (void) RetValue; } } static int sat_solver_final(sat_solver* s, int ** ppArray) { *ppArray = s->conf_final.ptr; return s->conf_final.size; } static abctime sat_solver_set_runtime_limit(sat_solver* s, abctime Limit) { abctime nRuntimeLimit = s->nRuntimeLimit; s->nRuntimeLimit = Limit; return nRuntimeLimit; } static int sat_solver_set_random(sat_solver* s, int fNotUseRandom) { int fNotUseRandomOld = s->fNotUseRandom; s->fNotUseRandom = fNotUseRandom; return fNotUseRandomOld; } static inline void sat_solver_bookmark(sat_solver* s) { assert( s->qhead == s->qtail ); s->iVarPivot = s->size; s->iTrailPivot = s->qhead; Sat_MemBookMark( &s->Mem ); if ( s->activity2 ) { s->var_inc2 = s->var_inc; memcpy( s->activity2, s->activity, sizeof(unsigned) * s->iVarPivot ); } } static inline void sat_solver_set_pivot_variables( sat_solver* s, int * pPivots, int nPivots ) { s->pivot_vars.cap = nPivots; s->pivot_vars.size = nPivots; s->pivot_vars.ptr = pPivots; } static inline int sat_solver_count_usedvars(sat_solver* s) { int i, nVars = 0; for ( i = 0; i < s->size; i++ ) if ( s->pFreqs[i] ) { s->pFreqs[i] = 0; nVars++; } return nVars; } static inline int sat_solver_add_const( sat_solver * pSat, int iVar, int fCompl ) { lit Lits[1]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Cid = sat_solver_addclause( pSat, Lits, Lits + 1 ); assert( Cid ); return 1; } static inline int sat_solver_add_buffer( sat_solver * pSat, int iVarA, int iVarB, int fCompl ) { lit Lits[2]; int Cid; assert( iVarA >= 0 && iVarB >= 0 ); Lits[0] = toLitCond( iVarA, 0 ); Lits[1] = toLitCond( iVarB, !fCompl ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVarA, 1 ); Lits[1] = toLitCond( iVarB, fCompl ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); return 2; } static inline int sat_solver_add_buffer_enable( sat_solver * pSat, int iVarA, int iVarB, int iVarEn, int fCompl ) { lit Lits[3]; int Cid; assert( iVarA >= 0 && iVarB >= 0 && iVarEn >= 0 ); Lits[0] = toLitCond( iVarA, 0 ); Lits[1] = toLitCond( iVarB, !fCompl ); Lits[2] = toLitCond( iVarEn, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarA, 1 ); Lits[1] = toLitCond( iVarB, fCompl ); Lits[2] = toLitCond( iVarEn, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); return 2; } static inline int sat_solver_add_and( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl ) { lit Lits[3]; int Cid; Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar0, fCompl0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVar, !fCompl ); Lits[1] = toLitCond( iVar1, fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar0, !fCompl0 ); Lits[2] = toLitCond( iVar1, !fCompl1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); return 3; } static inline int sat_solver_add_xor( sat_solver * pSat, int iVarA, int iVarB, int iVarC, int fCompl ) { lit Lits[3]; int Cid; assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarA, !fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 1 ); Lits[2] = toLitCond( iVarC, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarA, fCompl ); Lits[1] = toLitCond( iVarB, 0 ); Lits[2] = toLitCond( iVarC, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); return 4; } static inline int sat_solver_add_mux( sat_solver * pSat, int iVarC, int iVarT, int iVarE, int iVarZ ) { lit Lits[3]; int Cid; assert( iVarC >= 0 && iVarT >= 0 && iVarE >= 0 && iVarZ >= 0 ); Lits[0] = toLitCond( iVarC, 1 ); Lits[1] = toLitCond( iVarT, 1 ); Lits[2] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarC, 1 ); Lits[1] = toLitCond( iVarT, 0 ); Lits[2] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarC, 0 ); Lits[1] = toLitCond( iVarE, 1 ); Lits[2] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarC, 0 ); Lits[1] = toLitCond( iVarE, 0 ); Lits[2] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); if ( iVarT == iVarE ) return 4; Lits[0] = toLitCond( iVarT, 0 ); Lits[1] = toLitCond( iVarE, 0 ); Lits[2] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarT, 1 ); Lits[1] = toLitCond( iVarE, 1 ); Lits[2] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); return 6; } static inline int sat_solver_add_mux41( sat_solver * pSat, int iVarC0, int iVarC1, int iVarD0, int iVarD1, int iVarD2, int iVarD3, int iVarZ ) { lit Lits[4]; int Cid; assert( iVarC0 >= 0 && iVarC1 >= 0 && iVarD0 >= 0 && iVarD1 >= 0 && iVarD2 >= 0 && iVarD3 >= 0 && iVarZ >= 0 ); Lits[0] = toLitCond( iVarD0, 1 ); Lits[1] = toLitCond( iVarC0, 0 ); Lits[2] = toLitCond( iVarC1, 0 ); Lits[3] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD1, 1 ); Lits[1] = toLitCond( iVarC0, 1 ); Lits[2] = toLitCond( iVarC1, 0 ); Lits[3] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD2, 1 ); Lits[1] = toLitCond( iVarC0, 0 ); Lits[2] = toLitCond( iVarC1, 1 ); Lits[3] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD3, 1 ); Lits[1] = toLitCond( iVarC0, 1 ); Lits[2] = toLitCond( iVarC1, 1 ); Lits[3] = toLitCond( iVarZ, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD0, 0 ); Lits[1] = toLitCond( iVarC0, 0 ); Lits[2] = toLitCond( iVarC1, 0 ); Lits[3] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD1, 0 ); Lits[1] = toLitCond( iVarC0, 1 ); Lits[2] = toLitCond( iVarC1, 0 ); Lits[3] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD2, 0 ); Lits[1] = toLitCond( iVarC0, 0 ); Lits[2] = toLitCond( iVarC1, 1 ); Lits[3] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarD3, 0 ); Lits[1] = toLitCond( iVarC0, 1 ); Lits[2] = toLitCond( iVarC1, 1 ); Lits[3] = toLitCond( iVarZ, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); return 8; } static inline int sat_solver_add_xor_and( sat_solver * pSat, int iVarF, int iVarA, int iVarB, int iVarC ) { // F = (a (+) b) * c lit Lits[4]; int Cid; assert( iVarF >= 0 && iVarA >= 0 && iVarB >= 0 && iVarC >= 0 ); Lits[0] = toLitCond( iVarF, 1 ); Lits[1] = toLitCond( iVarA, 1 ); Lits[2] = toLitCond( iVarB, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarF, 1 ); Lits[1] = toLitCond( iVarA, 0 ); Lits[2] = toLitCond( iVarB, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 3 ); assert( Cid ); Lits[0] = toLitCond( iVarF, 1 ); Lits[1] = toLitCond( iVarC, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVarF, 0 ); Lits[1] = toLitCond( iVarA, 1 ); Lits[2] = toLitCond( iVarB, 0 ); Lits[3] = toLitCond( iVarC, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); Lits[0] = toLitCond( iVarF, 0 ); Lits[1] = toLitCond( iVarA, 0 ); Lits[2] = toLitCond( iVarB, 1 ); Lits[3] = toLitCond( iVarC, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 4 ); assert( Cid ); return 5; } static inline int sat_solver_add_constraint( sat_solver * pSat, int iVar, int iVar2, int fCompl ) { lit Lits[2]; int Cid; assert( iVar >= 0 ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 0 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); Lits[0] = toLitCond( iVar, fCompl ); Lits[1] = toLitCond( iVar2, 1 ); Cid = sat_solver_addclause( pSat, Lits, Lits + 2 ); assert( Cid ); return 2; } ABC_NAMESPACE_HEADER_END #endif