/**CFile**************************************************************** FileName [sswClass.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Inductive prover with constraints.] Synopsis [Representation of candidate equivalence classes.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - September 1, 2008.] Revision [$Id: sswClass.c,v 1.00 2008/09/01 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sswInt.h" ABC_NAMESPACE_IMPL_START /* The candidate equivalence classes are stored as a vector of pointers to the array of pointers to the nodes in each class. The first node of the class is its representative node. The representative has the smallest topological order among the class nodes. The nodes inside each class are ordered according to their topological order. The classes are ordered according to the topo order of their representatives. */ // internal representation of candidate equivalence classes struct Ssw_Cla_t_ { // class information Aig_Man_t * pAig; // original AIG manager Aig_Obj_t *** pId2Class; // non-const classes by ID of repr node int * pClassSizes; // sizes of each equivalence class int fConstCorr; // statistics int nClasses; // the total number of non-const classes int nCands1; // the total number of const candidates int nLits; // the number of literals in all classes // memory Aig_Obj_t ** pMemClasses; // memory allocated for equivalence classes Aig_Obj_t ** pMemClassesFree; // memory allocated for equivalence classes to be used // temporary data Vec_Ptr_t * vClassOld; // old equivalence class after splitting Vec_Ptr_t * vClassNew; // new equivalence class(es) after splitting Vec_Ptr_t * vRefined; // the nodes refined since the last iteration // procedures used for class refinement void * pManData; unsigned (*pFuncNodeHash) (void *,Aig_Obj_t *); // returns hash key of the node int (*pFuncNodeIsConst) (void *,Aig_Obj_t *); // returns 1 if the node is a constant int (*pFuncNodesAreEqual) (void *,Aig_Obj_t *, Aig_Obj_t *); // returns 1 if nodes are equal up to a complement }; //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static inline Aig_Obj_t * Ssw_ObjNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj ) { return ppNexts[pObj->Id]; } static inline void Ssw_ObjSetNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj, Aig_Obj_t * pNext ) { ppNexts[pObj->Id] = pNext; } // iterator through the equivalence classes #define Ssw_ManForEachClass( p, ppClass, i ) \ for ( i = 0; i < Aig_ManObjNumMax(p->pAig); i++ ) \ if ( ((ppClass) = p->pId2Class[i]) == NULL ) {} else // iterator through the nodes in one class #define Ssw_ClassForEachNode( p, pRepr, pNode, i ) \ for ( i = 0; i < p->pClassSizes[pRepr->Id]; i++ ) \ if ( ((pNode) = p->pId2Class[pRepr->Id][i]) == NULL ) {} else //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Creates one equivalence class.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Ssw_ObjAddClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr, Aig_Obj_t ** pClass, int nSize ) { assert( p->pId2Class[pRepr->Id] == NULL ); assert( pClass[0] == pRepr ); p->pId2Class[pRepr->Id] = pClass; assert( p->pClassSizes[pRepr->Id] == 0 ); assert( nSize > 1 ); p->pClassSizes[pRepr->Id] = nSize; p->nClasses++; p->nLits += nSize - 1; } /**Function************************************************************* Synopsis [Removes one equivalence class.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline Aig_Obj_t ** Ssw_ObjRemoveClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr ) { Aig_Obj_t ** pClass = p->pId2Class[pRepr->Id]; int nSize; assert( pClass != NULL ); p->pId2Class[pRepr->Id] = NULL; nSize = p->pClassSizes[pRepr->Id]; assert( nSize > 1 ); p->nClasses--; p->nLits -= nSize - 1; p->pClassSizes[pRepr->Id] = 0; return pClass; } /**Function************************************************************* Synopsis [Starts representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesStart( Aig_Man_t * pAig ) { Ssw_Cla_t * p; p = ABC_ALLOC( Ssw_Cla_t, 1 ); memset( p, 0, sizeof(Ssw_Cla_t) ); p->pAig = pAig; p->pId2Class = ABC_CALLOC( Aig_Obj_t **, Aig_ManObjNumMax(pAig) ); p->pClassSizes = ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); p->vClassOld = Vec_PtrAlloc( 100 ); p->vClassNew = Vec_PtrAlloc( 100 ); p->vRefined = Vec_PtrAlloc( 1000 ); if ( pAig->pReprs == NULL ) Aig_ManReprStart( pAig, Aig_ManObjNumMax(pAig) ); return p; } /**Function************************************************************* Synopsis [Starts representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesSetData( Ssw_Cla_t * p, void * pManData, unsigned (*pFuncNodeHash)(void *,Aig_Obj_t *), // returns hash key of the node int (*pFuncNodeIsConst)(void *,Aig_Obj_t *), // returns 1 if the node is a constant int (*pFuncNodesAreEqual)(void *,Aig_Obj_t *, Aig_Obj_t *) ) // returns 1 if nodes are equal up to a complement { p->pManData = pManData; p->pFuncNodeHash = pFuncNodeHash; p->pFuncNodeIsConst = pFuncNodeIsConst; p->pFuncNodesAreEqual = pFuncNodesAreEqual; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesStop( Ssw_Cla_t * p ) { if ( p->vClassNew ) Vec_PtrFree( p->vClassNew ); if ( p->vClassOld ) Vec_PtrFree( p->vClassOld ); Vec_PtrFree( p->vRefined ); ABC_FREE( p->pId2Class ); ABC_FREE( p->pClassSizes ); ABC_FREE( p->pMemClasses ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Man_t * Ssw_ClassesReadAig( Ssw_Cla_t * p ) { return p->pAig; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Ssw_ClassesGetRefined( Ssw_Cla_t * p ) { return p->vRefined; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesClearRefined( Ssw_Cla_t * p ) { Vec_PtrClear( p->vRefined ); } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesCand1Num( Ssw_Cla_t * p ) { return p->nCands1; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesClassNum( Ssw_Cla_t * p ) { return p->nClasses; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesLitNum( Ssw_Cla_t * p ) { return p->nLits; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Obj_t ** Ssw_ClassesReadClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr, int * pnSize ) { if ( p->pId2Class[pRepr->Id] == NULL ) return NULL; assert( p->pId2Class[pRepr->Id] != NULL ); assert( p->pClassSizes[pRepr->Id] > 1 ); *pnSize = p->pClassSizes[pRepr->Id]; return p->pId2Class[pRepr->Id]; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesCollectClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr, Vec_Ptr_t * vClass ) { int i; Vec_PtrClear( vClass ); if ( p->pId2Class[pRepr->Id] == NULL ) return; assert( p->pClassSizes[pRepr->Id] > 1 ); for ( i = 1; i < p->pClassSizes[pRepr->Id]; i++ ) Vec_PtrPush( vClass, p->pId2Class[pRepr->Id][i] ); } /**Function************************************************************* Synopsis [Checks candidate equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesCheck( Ssw_Cla_t * p ) { Aig_Obj_t * pObj, * pPrev, ** ppClass; int i, k, nLits, nClasses, nCands1; nClasses = nLits = 0; Ssw_ManForEachClass( p, ppClass, k ) { pPrev = NULL; assert( p->pClassSizes[ppClass[0]->Id] >= 2 ); Ssw_ClassForEachNode( p, ppClass[0], pObj, i ) { if ( i == 0 ) assert( Aig_ObjRepr(p->pAig, pObj) == NULL ); else { assert( Aig_ObjRepr(p->pAig, pObj) == ppClass[0] ); assert( pPrev->Id < pObj->Id ); nLits++; } pPrev = pObj; } nClasses++; } nCands1 = 0; Aig_ManForEachObj( p->pAig, pObj, i ) nCands1 += Ssw_ObjIsConst1Cand( p->pAig, pObj ); assert( p->nLits == nLits ); assert( p->nCands1 == nCands1 ); assert( p->nClasses == nClasses ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesPrintOne( Ssw_Cla_t * p, Aig_Obj_t * pRepr ) { Aig_Obj_t * pObj; int i; Abc_Print( 1, "{ " ); Ssw_ClassForEachNode( p, pRepr, pObj, i ) Abc_Print( 1, "%d(%d,%d,%d) ", pObj->Id, pObj->Level, Aig_SupportSize(p->pAig,pObj), Aig_NodeMffcSupp(p->pAig,pObj,0,NULL) ); Abc_Print( 1, "}\n" ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesPrint( Ssw_Cla_t * p, int fVeryVerbose ) { Aig_Obj_t ** ppClass; Aig_Obj_t * pObj; int i; Abc_Print( 1, "Equiv classes: Const1 = %5d. Class = %5d. Lit = %5d.\n", p->nCands1, p->nClasses, p->nCands1+p->nLits ); if ( !fVeryVerbose ) return; Abc_Print( 1, "Constants { " ); Aig_ManForEachObj( p->pAig, pObj, i ) if ( Ssw_ObjIsConst1Cand( p->pAig, pObj ) ) Abc_Print( 1, "%d(%d,%d,%d) ", pObj->Id, pObj->Level, Aig_SupportSize(p->pAig,pObj), Aig_NodeMffcSupp(p->pAig,pObj,0,NULL) ); Abc_Print( 1, "}\n" ); Ssw_ManForEachClass( p, ppClass, i ) { Abc_Print( 1, "%3d (%3d) : ", i, p->pClassSizes[i] ); Ssw_ClassesPrintOne( p, ppClass[0] ); } Abc_Print( 1, "\n" ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesRemoveNode( Ssw_Cla_t * p, Aig_Obj_t * pObj ) { Aig_Obj_t * pRepr, * pTemp; assert( p->pClassSizes[pObj->Id] == 0 ); assert( p->pId2Class[pObj->Id] == NULL ); pRepr = Aig_ObjRepr( p->pAig, pObj ); assert( pRepr != NULL ); // Vec_PtrPush( p->vRefined, pObj ); if ( Ssw_ObjIsConst1Cand( p->pAig, pObj ) ) { assert( p->pClassSizes[pRepr->Id] == 0 ); assert( p->pId2Class[pRepr->Id] == NULL ); Aig_ObjSetRepr( p->pAig, pObj, NULL ); p->nCands1--; return; } // Vec_PtrPush( p->vRefined, pRepr ); Aig_ObjSetRepr( p->pAig, pObj, NULL ); assert( p->pId2Class[pRepr->Id][0] == pRepr ); assert( p->pClassSizes[pRepr->Id] >= 2 ); if ( p->pClassSizes[pRepr->Id] == 2 ) { p->pId2Class[pRepr->Id] = NULL; p->nClasses--; p->pClassSizes[pRepr->Id] = 0; p->nLits--; } else { int i, k = 0; // remove the entry from the class Ssw_ClassForEachNode( p, pRepr, pTemp, i ) if ( pTemp != pObj ) p->pId2Class[pRepr->Id][k++] = pTemp; assert( k + 1 == p->pClassSizes[pRepr->Id] ); // reduce the class p->pClassSizes[pRepr->Id]--; p->nLits--; } } /**Function************************************************************* Synopsis [Takes the set of const1 cands and rehashes them using sim info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesPrepareRehash( Ssw_Cla_t * p, Vec_Ptr_t * vCands, int fConstCorr ) { // Aig_Man_t * pAig = p->pAig; Aig_Obj_t ** ppTable, ** ppNexts, ** ppClassNew; Aig_Obj_t * pObj, * pTemp, * pRepr; int i, k, nTableSize, nNodes, iEntry, nEntries, nEntries2; // allocate the hash table hashing simulation info into nodes nTableSize = Abc_PrimeCudd( Vec_PtrSize(vCands)/2 ); ppTable = ABC_CALLOC( Aig_Obj_t *, nTableSize ); ppNexts = ABC_CALLOC( Aig_Obj_t *, Aig_ManObjNumMax(p->pAig) ); // sort through the candidates nEntries = 0; p->nCands1 = 0; Vec_PtrForEachEntry( Aig_Obj_t *, vCands, pObj, i ) { assert( p->pClassSizes[pObj->Id] == 0 ); Aig_ObjSetRepr( p->pAig, pObj, NULL ); // check if the node belongs to the class of constant 1 if ( p->pFuncNodeIsConst( p->pManData, pObj ) ) { Ssw_ObjSetConst1Cand( p->pAig, pObj ); p->nCands1++; continue; } if ( fConstCorr ) continue; // hash the node by its simulation info iEntry = p->pFuncNodeHash( p->pManData, pObj ) % nTableSize; // add the node to the class if ( ppTable[iEntry] == NULL ) { ppTable[iEntry] = pObj; } else { // set the representative of this node pRepr = ppTable[iEntry]; Aig_ObjSetRepr( p->pAig, pObj, pRepr ); // add node to the table if ( Ssw_ObjNext( ppNexts, pRepr ) == NULL ) { // this will be the second entry p->pClassSizes[pRepr->Id]++; nEntries++; } // add the entry to the list Ssw_ObjSetNext( ppNexts, pObj, Ssw_ObjNext( ppNexts, pRepr ) ); Ssw_ObjSetNext( ppNexts, pRepr, pObj ); p->pClassSizes[pRepr->Id]++; nEntries++; } } // copy the entries into storage in the topological order nEntries2 = 0; Vec_PtrForEachEntry( Aig_Obj_t *, vCands, pObj, i ) { nNodes = p->pClassSizes[pObj->Id]; // skip the nodes that are not representatives of non-trivial classes if ( nNodes == 0 ) continue; assert( nNodes > 1 ); // add the nodes to the class in the topological order ppClassNew = p->pMemClassesFree + nEntries2; ppClassNew[0] = pObj; for ( pTemp = Ssw_ObjNext(ppNexts, pObj), k = 1; pTemp; pTemp = Ssw_ObjNext(ppNexts, pTemp), k++ ) { ppClassNew[nNodes-k] = pTemp; } // add the class of nodes p->pClassSizes[pObj->Id] = 0; Ssw_ObjAddClass( p, pObj, ppClassNew, nNodes ); // increment the number of entries nEntries2 += nNodes; } p->pMemClassesFree += nEntries2; assert( nEntries == nEntries2 ); ABC_FREE( ppTable ); ABC_FREE( ppNexts ); // now it is time to refine the classes return Ssw_ClassesRefine( p, 1 ); } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepare( Aig_Man_t * pAig, int nFramesK, int fLatchCorr, int fConstCorr, int fOutputCorr, int nMaxLevs, int fVerbose ) { // int nFrames = 4; // int nWords = 1; // int nIters = 16; // int nFrames = 32; // int nWords = 4; // int nIters = 0; int nFrames = Abc_MaxInt( nFramesK, 4 ); int nWords = 2; int nIters = 16; Ssw_Cla_t * p; Ssw_Sml_t * pSml; Vec_Ptr_t * vCands; Aig_Obj_t * pObj; int i, k, RetValue; abctime clk; // start the classes p = Ssw_ClassesStart( pAig ); p->fConstCorr = fConstCorr; // perform sequential simulation clk = Abc_Clock(); pSml = Ssw_SmlSimulateSeq( pAig, 0, nFrames, nWords ); if ( fVerbose ) { Abc_Print( 1, "Allocated %.2f MB to store simulation information.\n", 1.0*(sizeof(unsigned) * Aig_ManObjNumMax(pAig) * nFrames * nWords)/(1<<20) ); Abc_Print( 1, "Initial simulation of %d frames with %d words. ", nFrames, nWords ); ABC_PRT( "Time", Abc_Clock() - clk ); } // set comparison procedures clk = Abc_Clock(); Ssw_ClassesSetData( p, pSml, (unsigned(*)(void *,Aig_Obj_t *))Ssw_SmlObjHashWord, (int(*)(void *,Aig_Obj_t *))Ssw_SmlObjIsConstWord, (int(*)(void *,Aig_Obj_t *,Aig_Obj_t *))Ssw_SmlObjsAreEqualWord ); // collect nodes to be considered as candidates vCands = Vec_PtrAlloc( 1000 ); Aig_ManForEachObj( p->pAig, pObj, i ) { if ( fLatchCorr ) { if ( !Saig_ObjIsLo(p->pAig, pObj) ) continue; } else { if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsCi(pObj) ) continue; // skip the node with more that the given number of levels if ( nMaxLevs && (int)pObj->Level > nMaxLevs ) continue; } Vec_PtrPush( vCands, pObj ); } // this change will consider all PO drivers if ( fOutputCorr ) { Vec_PtrClear( vCands ); Aig_ManForEachObj( p->pAig, pObj, i ) pObj->fMarkB = 0; Saig_ManForEachPo( p->pAig, pObj, i ) if ( Aig_ObjIsCand(Aig_ObjFanin0(pObj)) ) Aig_ObjFanin0(pObj)->fMarkB = 1; Aig_ManForEachObj( p->pAig, pObj, i ) if ( pObj->fMarkB ) Vec_PtrPush( vCands, pObj ); Aig_ManForEachObj( p->pAig, pObj, i ) pObj->fMarkB = 0; } // allocate room for classes p->pMemClasses = ABC_ALLOC( Aig_Obj_t *, Vec_PtrSize(vCands) ); p->pMemClassesFree = p->pMemClasses; // now it is time to refine the classes Ssw_ClassesPrepareRehash( p, vCands, fConstCorr ); if ( fVerbose ) { Abc_Print( 1, "Collecting candidate equivalence classes. " ); ABC_PRT( "Time", Abc_Clock() - clk ); } clk = Abc_Clock(); // perform iterative refinement using simulation for ( i = 1; i < nIters; i++ ) { // collect const1 candidates Vec_PtrClear( vCands ); Aig_ManForEachObj( p->pAig, pObj, k ) if ( Ssw_ObjIsConst1Cand( p->pAig, pObj ) ) Vec_PtrPush( vCands, pObj ); assert( Vec_PtrSize(vCands) == p->nCands1 ); // perform new round of simulation Ssw_SmlResimulateSeq( pSml ); // check equivalence classes RetValue = Ssw_ClassesPrepareRehash( p, vCands, fConstCorr ); if ( RetValue == 0 ) break; } Ssw_SmlStop( pSml ); Vec_PtrFree( vCands ); if ( fVerbose ) { Abc_Print( 1, "Simulation of %d frames with %d words (%2d rounds). ", nFrames, nWords, i-1 ); ABC_PRT( "Time", Abc_Clock() - clk ); } Ssw_ClassesCheck( p ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepareSimple( Aig_Man_t * pAig, int fLatchCorr, int nMaxLevs ) { Ssw_Cla_t * p; Aig_Obj_t * pObj; int i; // start the classes p = Ssw_ClassesStart( pAig ); // go through the nodes p->nCands1 = 0; Aig_ManForEachObj( pAig, pObj, i ) { if ( fLatchCorr ) { if ( !Saig_ObjIsLo(pAig, pObj) ) continue; } else { if ( !Aig_ObjIsNode(pObj) && !Saig_ObjIsLo(pAig, pObj) ) continue; // skip the node with more that the given number of levels if ( nMaxLevs && (int)pObj->Level > nMaxLevs ) continue; } Ssw_ObjSetConst1Cand( pAig, pObj ); p->nCands1++; } // allocate room for classes p->pMemClassesFree = p->pMemClasses = ABC_ALLOC( Aig_Obj_t *, p->nCands1 ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepareFromReprs( Aig_Man_t * pAig ) { Ssw_Cla_t * p; Aig_Obj_t * pObj, * pRepr; int * pClassSizes, nEntries, i; // start the classes p = Ssw_ClassesStart( pAig ); // allocate memory for classes p->pMemClasses = ABC_CALLOC( Aig_Obj_t *, Aig_ManObjNumMax(pAig) ); // count classes p->nCands1 = 0; Aig_ManForEachObj( pAig, pObj, i ) { if ( Ssw_ObjIsConst1Cand(pAig, pObj) ) { p->nCands1++; continue; } if ( (pRepr = Aig_ObjRepr(pAig, pObj)) ) { if ( p->pClassSizes[pRepr->Id]++ == 0 ) p->pClassSizes[pRepr->Id]++; } } // add nodes nEntries = 0; p->nClasses = 0; pClassSizes = ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); Aig_ManForEachObj( pAig, pObj, i ) { if ( p->pClassSizes[i] ) { p->pId2Class[i] = p->pMemClasses + nEntries; nEntries += p->pClassSizes[i]; p->pId2Class[i][pClassSizes[i]++] = pObj; p->nClasses++; continue; } if ( Ssw_ObjIsConst1Cand(pAig, pObj) ) continue; if ( (pRepr = Aig_ObjRepr(pAig, pObj)) ) p->pId2Class[pRepr->Id][pClassSizes[pRepr->Id]++] = pObj; } p->pMemClassesFree = p->pMemClasses + nEntries; p->nLits = nEntries - p->nClasses; assert( memcmp(pClassSizes, p->pClassSizes, sizeof(int)*Aig_ManObjNumMax(pAig)) == 0 ); ABC_FREE( pClassSizes ); // Abc_Print( 1, "After converting:\n" ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepareTargets( Aig_Man_t * pAig ) { Ssw_Cla_t * p; Aig_Obj_t * pObj; int i; // start the classes p = Ssw_ClassesStart( pAig ); // go through the nodes p->nCands1 = 0; Saig_ManForEachPo( pAig, pObj, i ) { Ssw_ObjSetConst1Cand( pAig, Aig_ObjFanin0(pObj) ); p->nCands1++; } // allocate room for classes p->pMemClassesFree = p->pMemClasses = ABC_ALLOC( Aig_Obj_t *, p->nCands1 ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Creates classes from the temporary representation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPreparePairs( Aig_Man_t * pAig, Vec_Int_t ** pvClasses ) { Ssw_Cla_t * p; Aig_Obj_t ** ppClassNew; Aig_Obj_t * pObj, * pRepr, * pPrev; int i, k, nTotalObjs, nEntries, Entry; // start the classes p = Ssw_ClassesStart( pAig ); // count the number of entries in the classes nTotalObjs = 0; for ( i = 0; i < Aig_ManObjNumMax(pAig); i++ ) nTotalObjs += pvClasses[i] ? Vec_IntSize(pvClasses[i]) : 0; // allocate memory for classes p->pMemClasses = ABC_ALLOC( Aig_Obj_t *, nTotalObjs ); // create constant-1 class if ( pvClasses[0] ) Vec_IntForEachEntry( pvClasses[0], Entry, i ) { assert( (i == 0) == (Entry == 0) ); if ( i == 0 ) continue; pObj = Aig_ManObj( pAig, Entry ); Ssw_ObjSetConst1Cand( pAig, pObj ); p->nCands1++; } // create classes nEntries = 0; for ( i = 1; i < Aig_ManObjNumMax(pAig); i++ ) { if ( pvClasses[i] == NULL ) continue; // get room for storing the class ppClassNew = p->pMemClasses + nEntries; nEntries += Vec_IntSize( pvClasses[i] ); // store the nodes of the class pPrev = pRepr = Aig_ManObj( pAig, Vec_IntEntry(pvClasses[i],0) ); ppClassNew[0] = pRepr; Vec_IntForEachEntryStart( pvClasses[i], Entry, k, 1 ) { pObj = Aig_ManObj( pAig, Entry ); assert( pPrev->Id < pObj->Id ); pPrev = pObj; ppClassNew[k] = pObj; Aig_ObjSetRepr( pAig, pObj, pRepr ); } // create new class Ssw_ObjAddClass( p, pRepr, ppClassNew, Vec_IntSize(pvClasses[i]) ); } // prepare room for new classes p->pMemClassesFree = p->pMemClasses + nEntries; Ssw_ClassesCheck( p ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Creates classes from the temporary representation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPreparePairsSimple( Aig_Man_t * pMiter, Vec_Int_t * vPairs ) { Ssw_Cla_t * p; Aig_Obj_t ** ppClassNew; Aig_Obj_t * pObj, * pRepr; int i; // start the classes p = Ssw_ClassesStart( pMiter ); // allocate memory for classes p->pMemClasses = ABC_ALLOC( Aig_Obj_t *, Vec_IntSize(vPairs) ); // create classes for ( i = 0; i < Vec_IntSize(vPairs); i += 2 ) { pRepr = Aig_ManObj( pMiter, Vec_IntEntry(vPairs, i) ); pObj = Aig_ManObj( pMiter, Vec_IntEntry(vPairs, i+1) ); assert( Aig_ObjId(pRepr) < Aig_ObjId(pObj) ); Aig_ObjSetRepr( pMiter, pObj, pRepr ); // get room for storing the class ppClassNew = p->pMemClasses + i; ppClassNew[0] = pRepr; ppClassNew[1] = pObj; // create new class Ssw_ObjAddClass( p, pRepr, ppClassNew, 2 ); } // prepare room for new classes p->pMemClassesFree = NULL; Ssw_ClassesCheck( p ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Iteratively refines the classes after simulation.] Description [Returns the number of refinements performed.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineOneClass( Ssw_Cla_t * p, Aig_Obj_t * pReprOld, int fRecursive ) { Aig_Obj_t ** pClassOld, ** pClassNew; Aig_Obj_t * pObj, * pReprNew; int i; // split the class Vec_PtrClear( p->vClassOld ); Vec_PtrClear( p->vClassNew ); Ssw_ClassForEachNode( p, pReprOld, pObj, i ) if ( p->pFuncNodesAreEqual(p->pManData, pReprOld, pObj) ) Vec_PtrPush( p->vClassOld, pObj ); else Vec_PtrPush( p->vClassNew, pObj ); // check if splitting happened if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; // remember that this class is refined // Ssw_ClassForEachNode( p, pReprOld, pObj, i ) // Vec_PtrPush( p->vRefined, pObj ); // get the new representative pReprNew = (Aig_Obj_t *)Vec_PtrEntry( p->vClassNew, 0 ); assert( Vec_PtrSize(p->vClassOld) > 0 ); assert( Vec_PtrSize(p->vClassNew) > 0 ); // create old class pClassOld = Ssw_ObjRemoveClass( p, pReprOld ); Vec_PtrForEachEntry( Aig_Obj_t *, p->vClassOld, pObj, i ) { pClassOld[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprOld : NULL ); } // create new class pClassNew = pClassOld + i; Vec_PtrForEachEntry( Aig_Obj_t *, p->vClassNew, pObj, i ) { pClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } // put classes back if ( Vec_PtrSize(p->vClassOld) > 1 ) Ssw_ObjAddClass( p, pReprOld, pClassOld, Vec_PtrSize(p->vClassOld) ); if ( Vec_PtrSize(p->vClassNew) > 1 ) Ssw_ObjAddClass( p, pReprNew, pClassNew, Vec_PtrSize(p->vClassNew) ); // check if the class should be recursively refined if ( fRecursive && Vec_PtrSize(p->vClassNew) > 1 ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } /**Function************************************************************* Synopsis [Refines the classes after simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefine( Ssw_Cla_t * p, int fRecursive ) { Aig_Obj_t ** ppClass; int i, nRefis = 0; Ssw_ManForEachClass( p, ppClass, i ) nRefis += Ssw_ClassesRefineOneClass( p, ppClass[0], fRecursive ); return nRefis; } /**Function************************************************************* Synopsis [Refines the classes after simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineGroup( Ssw_Cla_t * p, Vec_Ptr_t * vReprs, int fRecursive ) { Aig_Obj_t * pObj; int i, nRefis = 0; Vec_PtrForEachEntry( Aig_Obj_t *, vReprs, pObj, i ) nRefis += Ssw_ClassesRefineOneClass( p, pObj, fRecursive ); return nRefis; } /**Function************************************************************* Synopsis [Refine the group of constant 1 nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineConst1Group( Ssw_Cla_t * p, Vec_Ptr_t * vRoots, int fRecursive ) { Aig_Obj_t * pObj, * pReprNew, ** ppClassNew; int i; if ( Vec_PtrSize(vRoots) == 0 ) return 0; // collect the nodes to be refined Vec_PtrClear( p->vClassNew ); Vec_PtrForEachEntry( Aig_Obj_t *, vRoots, pObj, i ) if ( !p->pFuncNodeIsConst( p->pManData, pObj ) ) Vec_PtrPush( p->vClassNew, pObj ); // check if there is a new class if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; p->nCands1 -= Vec_PtrSize(p->vClassNew); pReprNew = (Aig_Obj_t *)Vec_PtrEntry( p->vClassNew, 0 ); Aig_ObjSetRepr( p->pAig, pReprNew, NULL ); if ( Vec_PtrSize(p->vClassNew) == 1 ) return 1; // create a new class composed of these nodes ppClassNew = p->pMemClassesFree; p->pMemClassesFree += Vec_PtrSize(p->vClassNew); Vec_PtrForEachEntry( Aig_Obj_t *, p->vClassNew, pObj, i ) { ppClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } Ssw_ObjAddClass( p, pReprNew, ppClassNew, Vec_PtrSize(p->vClassNew) ); // refine them recursively if ( fRecursive ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } /**Function************************************************************* Synopsis [Refine the group of constant 1 nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineConst1( Ssw_Cla_t * p, int fRecursive ) { Aig_Obj_t * pObj, * pReprNew, ** ppClassNew; int i; // collect the nodes to be refined Vec_PtrClear( p->vClassNew ); for ( i = 0; i < Vec_PtrSize(p->pAig->vObjs); i++ ) if ( p->pAig->pReprs[i] == Aig_ManConst1(p->pAig) ) { pObj = Aig_ManObj( p->pAig, i ); if ( !p->pFuncNodeIsConst( p->pManData, pObj ) ) { Vec_PtrPush( p->vClassNew, pObj ); // Vec_PtrPush( p->vRefined, pObj ); } } // check if there is a new class if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; if ( p->fConstCorr ) { Vec_PtrForEachEntry( Aig_Obj_t *, p->vClassNew, pObj, i ) Aig_ObjSetRepr( p->pAig, pObj, NULL ); return 1; } p->nCands1 -= Vec_PtrSize(p->vClassNew); pReprNew = (Aig_Obj_t *)Vec_PtrEntry( p->vClassNew, 0 ); Aig_ObjSetRepr( p->pAig, pReprNew, NULL ); if ( Vec_PtrSize(p->vClassNew) == 1 ) return 1; // create a new class composed of these nodes ppClassNew = p->pMemClassesFree; p->pMemClassesFree += Vec_PtrSize(p->vClassNew); Vec_PtrForEachEntry( Aig_Obj_t *, p->vClassNew, pObj, i ) { ppClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } Ssw_ObjAddClass( p, pReprNew, ppClassNew, Vec_PtrSize(p->vClassNew) ); // refine them recursively if ( fRecursive ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END