/* * Revision Control Information * * $Source$ * $Author$ * $Revision$ * $Date$ * */ /* * espresso.h -- header file for Espresso-mv */ //#include "port.h" //#include "utility.h" #include "sparse.h" #include "mincov.h" #include "util_hack.h" // added #define ABC__misc__espresso__espresso_h #define print_time(t) util_print_time(t) #ifdef IBM_WATC #define void int #include "short.h" #endif #ifdef IBMPC /* set default options for IBM/PC */ #define NO_INLINE #define BPI 16 #endif /*-----THIS USED TO BE set.h----- */ /* * set.h -- definitions for packed arrays of bits * * This header file describes the data structures which comprise a * facility for efficiently implementing packed arrays of bits * (otherwise known as sets, cf. Pascal). * * A set is a vector of bits and is implemented here as an array of * unsigned integers. The low order bits of set[0] give the index of * the last word of set data. The higher order bits of set[0] are * used to store data associated with the set. The set data is * contained in elements set[1] ... set[LOOP(set)] as a packed bit * array. * * A family of sets is a two-dimensional matrix of bits and is * implemented with the data type "set_family". * * BPI == 32 and BPI == 16 have been tested and work. */ /* Define host machine characteristics of "unsigned int" */ #ifndef ABC__misc__espresso__espresso_h #define BPI ABC_NAMESPACE_HEADER_START 32 /* # bits per integer */ #endif #if BPI == 32 #define LOGBPI 5 /* log(BPI)/log(2) */ #else #define LOGBPI 4 /* log(BPI)/log(2) */ #endif /* Define the set type */ typedef unsigned int *pset; /* Define the set family type -- an array of sets */ typedef struct set_family { int wsize; /* Size of each set in 'ints' */ int sf_size; /* User declared set size */ int capacity; /* Number of sets allocated */ int count; /* The number of sets in the family */ int active_count; /* Number of "active" sets */ pset data; /* Pointer to the set data */ struct set_family *next; /* For garbage collection */ } set_family_t, *pset_family; /* Macros to set and test single elements */ #define WHICH_WORD(element) (((element) >> LOGBPI) + 1) #define WHICH_BIT(element) ((element) & (BPI-1)) /* # of ints needed to allocate a set with "size" elements */ #if BPI == 32 #define SET_SIZE(size) ((size) <= BPI ? 2 : (WHICH_WORD((size)-1) + 1)) #else #define SET_SIZE(size) ((size) <= BPI ? 3 : (WHICH_WORD((size)-1) + 2)) #endif /* * Three fields are maintained in the first word of the set * LOOP is the index of the last word used for set data * LOOPCOPY is the index of the last word in the set * SIZE is available for general use (e.g., recording # elements in set) * NELEM retrieves the number of elements in the set */ #define LOOP(set) (set[0] & 0x03ff) #define PUTLOOP(set, i) (set[0] &= ~0x03ff, set[0] |= (i)) #if BPI == 32 #define LOOPCOPY(set) LOOP(set) #define SIZE(set) (set[0] >> 16) #define PUTSIZE(set, size) (set[0] &= 0xffff, set[0] |= ((size) << 16)) #else #define LOOPCOPY(set) (LOOP(set) + 1) #define SIZE(set) (set[LOOP(set)+1]) #define PUTSIZE(set, size) ((set[LOOP(set)+1]) = (size)) #endif #define NELEM(set) (BPI * LOOP(set)) #define LOOPINIT(size) ((size <= BPI) ? 1 : WHICH_WORD((size)-1)) /* * FLAGS store general information about the set */ #define SET(set, flag) (set[0] |= (flag)) #define RESET(set, flag) (set[0] &= ~ (flag)) #define TESTP(set, flag) (set[0] & (flag)) /* Flag definitions are ... */ #define PRIME 0x8000 /* cube is prime */ #define NONESSEN 0x4000 /* cube cannot be essential prime */ #define ACTIVE 0x2000 /* cube is still active */ #define REDUND 0x1000 /* cube is redundant(at this point) */ #define COVERED 0x0800 /* cube has been covered */ #define RELESSEN 0x0400 /* cube is relatively essential */ /* Most efficient way to look at all members of a set family */ #define foreach_set(R, last, p)\ for(p=R->data,last=p+R->count*R->wsize;pwsize) #define foreach_remaining_set(R, last, pfirst, p)\ for(p=pfirst+R->wsize,last=R->data+R->count*R->wsize;pwsize) #define foreach_active_set(R, last, p)\ foreach_set(R,last,p) if (TESTP(p, ACTIVE)) /* Another way that also keeps the index of the current set member in i */ #define foreachi_set(R, i, p)\ for(p=R->data,i=0;icount;p+=R->wsize,i++) #define foreachi_active_set(R, i, p)\ foreachi_set(R,i,p) if (TESTP(p, ACTIVE)) /* Looping over all elements in a set: * foreach_set_element(pset p, int i, unsigned val, int base) { * . * . * . * } */ #define foreach_set_element(p, i, val, base) \ for(i = LOOP(p); i > 0; ) \ for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) \ if (val & 1) /* Return a pointer to a given member of a set family */ #define GETSET(family, index) ((family)->data + (family)->wsize * (index)) /* Allocate and deallocate sets */ #define set_new(size) set_clear(ALLOC(unsigned int, SET_SIZE(size)), size) #define set_full(size) set_fill(ALLOC(unsigned int, SET_SIZE(size)), size) #define set_save(r) set_copy(ALLOC(unsigned int, SET_SIZE(NELEM(r))), r) #define set_free(r) FREE(r) /* Check for set membership, remove set element and insert set element */ #define is_in_set(set, e) (set[WHICH_WORD(e)] & (1 << WHICH_BIT(e))) #define set_remove(set, e) (set[WHICH_WORD(e)] &= ~ (1 << WHICH_BIT(e))) #define set_insert(set, e) (set[WHICH_WORD(e)] |= 1 << WHICH_BIT(e)) /* Inline code substitution for those places that REALLY need it on a VAX */ #ifdef NO_INLINE #define INLINEset_copy(r, a) (void) set_copy(r,a) #define INLINEset_clear(r, size) (void) set_clear(r, size) #define INLINEset_fill(r, size) (void) set_fill(r, size) #define INLINEset_and(r, a, b) (void) set_and(r, a, b) #define INLINEset_or(r, a, b) (void) set_or(r, a, b) #define INLINEset_diff(r, a, b) (void) set_diff(r, a, b) #define INLINEset_ndiff(r, a, b, f) (void) set_ndiff(r, a, b, f) #define INLINEset_xor(r, a, b) (void) set_xor(r, a, b) #define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f) #define INLINEset_merge(r, a, b, mask) (void) set_merge(r, a, b, mask) #define INLINEsetp_implies(a, b, when_false) \ if (! setp_implies(a,b)) when_false #define INLINEsetp_disjoint(a, b, when_false) \ if (! setp_disjoint(a,b)) when_false #define INLINEsetp_equal(a, b, when_false) \ if (! setp_equal(a,b)) when_false #else #define INLINEset_copy(r, a)\ {register int i_=LOOPCOPY(a); do r[i_]=a[i_]; while (--i_>=0);} #define INLINEset_clear(r, size)\ {register int i_=LOOPINIT(size); *r=i_; do r[i_] = 0; while (--i_ > 0);} #define INLINEset_fill(r, size)\ {register int i_=LOOPINIT(size); *r=i_; \ r[i_]=((unsigned int)(~0))>>(i_*BPI-size); while(--i_>0) r[i_]=~0;} #define INLINEset_and(r, a, b)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = a[i_] & b[i_]; while (--i_>0);} #define INLINEset_or(r, a, b)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = a[i_] | b[i_]; while (--i_>0);} #define INLINEset_diff(r, a, b)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = a[i_] & ~ b[i_]; while (--i_>0);} #define INLINEset_ndiff(r, a, b, fullset)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = fullset[i_] & (a[i_] | ~ b[i_]); while (--i_>0);} #ifdef IBM_WATC #define INLINEset_xor(r, a, b) (void) set_xor(r, a, b) #define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f) #else #define INLINEset_xor(r, a, b)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = a[i_] ^ b[i_]; while (--i_>0);} #define INLINEset_xnor(r, a, b, fullset)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = fullset[i_] & ~ (a[i_] ^ b[i_]); while (--i_>0);} #endif #define INLINEset_merge(r, a, b, mask)\ {register int i_=LOOP(a); PUTLOOP(r,i_);\ do r[i_] = (a[i_]&mask[i_]) | (b[i_]&~mask[i_]); while (--i_>0);} #define INLINEsetp_implies(a, b, when_false)\ {register int i_=LOOP(a); do if (a[i_]&~b[i_]) break; while (--i_>0);\ if (i_ != 0) when_false;} #define INLINEsetp_disjoint(a, b, when_false)\ {register int i_=LOOP(a); do if (a[i_]&b[i_]) break; while (--i_>0);\ if (i_ != 0) when_false;} #define INLINEsetp_equal(a, b, when_false)\ {register int i_=LOOP(a); do if (a[i_]!=b[i_]) break; while (--i_>0);\ if (i_ != 0) when_false;} #endif #if BPI == 32 #define count_ones(v)\ (bit_count[v & 255] + bit_count[(v >> 8) & 255]\ + bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255]) #else #define count_ones(v) (bit_count[v & 255] + bit_count[(v >> 8) & 255]) #endif /* Table for efficient bit counting */ extern int bit_count[256]; /*----- END OF set.h ----- */ /* Define a boolean type */ #define bool int #define FALSE 0 #define TRUE 1 #define MAYBE 2 #define print_bool(x) ((x) == 0 ? "FALSE" : ((x) == 1 ? "TRUE" : "MAYBE")) /* Map many cube/cover types/routines into equivalent set types/routines */ #define pcube pset #define new_cube() set_new(cube.size) #define free_cube(r) set_free(r) #define pcover pset_family #define new_cover(i) sf_new(i, cube.size) #define free_cover(r) sf_free(r) #define free_cubelist(T) FREE(T[0]); FREE(T); /* cost_t describes the cost of a cover */ typedef struct cost_struct { int cubes; /* number of cubes in the cover */ int in; /* transistor count, binary-valued variables */ int out; /* transistor count, output part */ int mv; /* transistor count, multiple-valued vars */ int total; /* total number of transistors */ int primes; /* number of prime cubes */ } cost_t, *pcost; /* pair_t describes bit-paired variables */ typedef struct pair_struct { int cnt; int *var1; int *var2; } pair_t, *ppair; /* symbolic_list_t describes a single ".symbolic" line */ typedef struct symbolic_list_struct { int variable; int pos; struct symbolic_list_struct *next; } symbolic_list_t; /* symbolic_list_t describes a single ".symbolic" line */ typedef struct symbolic_label_struct { char *label; struct symbolic_label_struct *next; } symbolic_label_t; /* symbolic_t describes a linked list of ".symbolic" lines */ typedef struct symbolic_struct { symbolic_list_t *symbolic_list; /* linked list of items */ int symbolic_list_length; /* length of symbolic_list list */ symbolic_label_t *symbolic_label; /* linked list of new names */ int symbolic_label_length; /* length of symbolic_label list */ struct symbolic_struct *next; } symbolic_t; /* PLA_t stores the logical representation of a PLA */ typedef struct { pcover F, D, R; /* on-set, off-set and dc-set */ char *filename; /* filename */ int pla_type; /* logical PLA format */ pcube phase; /* phase to split into on-set and off-set */ ppair pair; /* how to pair variables */ char **label; /* labels for the columns */ symbolic_t *symbolic; /* allow binary->symbolic mapping */ symbolic_t *symbolic_output;/* allow symbolic output mapping */ } PLA_t, *pPLA; #define equal(a,b) (strcmp(a,b) == 0) /* This is a hack which I wish I hadn't done, but too painful to change */ #define CUBELISTSIZE(T) (((pcube *) T[1] - T) - 3) /* For documentation purposes */ #define IN #define OUT #define INOUT /* The pla_type field describes the input and output format of the PLA */ #define F_type 1 #define D_type 2 #define R_type 4 #define PLEASURE_type 8 /* output format */ #define EQNTOTT_type 16 /* output format algebraic eqns */ #define KISS_type 128 /* output format kiss */ #define CONSTRAINTS_type 256 /* output the constraints (numeric) */ #define SYMBOLIC_CONSTRAINTS_type 512 /* output the constraints (symbolic) */ #define FD_type (F_type | D_type) #define FR_type (F_type | R_type) #define DR_type (D_type | R_type) #define FDR_type (F_type | D_type | R_type) /* Definitions for the debug variable */ #define COMPL 0x0001 #define ESSEN 0x0002 #define EXPAND 0x0004 #define EXPAND1 0x0008 #define GASP 0x0010 #define IRRED 0x0020 #define REDUCE 0x0040 #define REDUCE1 0x0080 #define SPARSE 0x0100 #define TAUT 0x0200 #define EXACT 0x0400 #define MINCOV 0x0800 #define MINCOV1 0x1000 #define SHARP 0x2000 #define IRRED1 0x4000 #define VERSION\ "UC Berkeley, Espresso Version #2.3, Release date 01/31/88" /* Define constants used for recording program statistics */ #define TIME_COUNT 16 #define READ_TIME 0 #define COMPL_TIME 1 #define ONSET_TIME 2 #define ESSEN_TIME 3 #define EXPAND_TIME 4 #define IRRED_TIME 5 #define REDUCE_TIME 6 #define GEXPAND_TIME 7 #define GIRRED_TIME 8 #define GREDUCE_TIME 9 #define PRIMES_TIME 10 #define MINCOV_TIME 11 #define MV_REDUCE_TIME 12 #define RAISE_IN_TIME 13 #define VERIFY_TIME 14 #define WRITE_TIME 15 /* For those who like to think about PLAs, macros to get at inputs/outputs */ #define NUMINPUTS cube.num_binary_vars #define NUMOUTPUTS cube.part_size[cube.num_vars - 1] #define POSITIVE_PHASE(pos)\ (is_in_set(PLA->phase, cube.first_part[cube.output]+pos) != 0) #define INLABEL(var) PLA->label[cube.first_part[var] + 1] #define OUTLABEL(pos) PLA->label[cube.first_part[cube.output] + pos] #define GETINPUT(c, pos)\ ((c[WHICH_WORD(2*pos)] >> WHICH_BIT(2*pos)) & 3) #define GETOUTPUT(c, pos)\ (is_in_set(c, cube.first_part[cube.output] + pos) != 0) #define PUTINPUT(c, pos, value)\ c[WHICH_WORD(2*pos)] = (c[WHICH_WORD(2*pos)] & ~(3 << WHICH_BIT(2*pos)))\ | (value << WHICH_BIT(2*pos)) #define PUTOUTPUT(c, pos, value)\ c[WHICH_WORD(pos)] = (c[WHICH_WORD(pos)] & ~(1 << WHICH_BIT(pos)))\ | (value << WHICH_BIT(pos)) #define TWO 3 #define DASH 3 #define ONE 2 #define ZERO 1 #define EXEC(fct, name, S)\ {long t=ptime();fct;if(trace)print_trace(S,name,ptime()-t);} #define EXEC_S(fct, name, S)\ {long t=ptime();fct;if(summary)print_trace(S,name,ptime()-t);} #define EXECUTE(fct,i,S,cost)\ {long t=ptime();fct;totals(t,i,S,&(cost));} /* * Global Variable Declarations */ extern unsigned int debug; /* debug parameter */ extern bool verbose_debug; /* -v: whether to print a lot */ extern char *total_name[TIME_COUNT]; /* basic function names */ extern long total_time[TIME_COUNT]; /* time spent in basic fcts */ extern int total_calls[TIME_COUNT]; /* # calls to each fct */ extern bool echo_comments; /* turned off by -eat option */ extern bool echo_unknown_commands; /* always true ?? */ extern bool force_irredundant; /* -nirr command line option */ extern bool skip_make_sparse; extern bool kiss; /* -kiss command line option */ extern bool pos; /* -pos command line option */ extern bool print_solution; /* -x command line option */ extern bool recompute_onset; /* -onset command line option */ extern bool remove_essential; /* -ness command line option */ extern bool single_expand; /* -fast command line option */ extern bool summary; /* -s command line option */ extern bool trace; /* -t command line option */ extern bool unwrap_onset; /* -nunwrap command line option */ extern bool use_random_order; /* -random command line option */ extern bool use_super_gasp; /* -strong command line option */ extern char *filename; /* filename PLA was read from */ extern bool debug_exact_minimization; /* dumps info for -do exact */ /* * pla_types are the input and output types for reading/writing a PLA */ struct pla_types_struct { char *key; int value; }; /* * The cube structure is a global structure which contains information * on how a set maps into a cube -- i.e., number of parts per variable, * number of variables, etc. Also, many fields are pre-computed to * speed up various primitive operations. */ #define CUBE_TEMP 10 struct cube_struct { int size; /* set size of a cube */ int num_vars; /* number of variables in a cube */ int num_binary_vars; /* number of binary variables */ int *first_part; /* first element of each variable */ int *last_part; /* first element of each variable */ int *part_size; /* number of elements in each variable */ int *first_word; /* first word for each variable */ int *last_word; /* last word for each variable */ pset binary_mask; /* Mask to extract binary variables */ pset mv_mask; /* mask to get mv parts */ pset *var_mask; /* mask to extract a variable */ pset *temp; /* an array of temporary sets */ pset fullset; /* a full cube */ pset emptyset; /* an empty cube */ unsigned int inmask; /* mask to get odd word of binary part */ int inword; /* which word number for above */ int *sparse; /* should this variable be sparse? */ int num_mv_vars; /* number of multiple-valued variables */ int output; /* which variable is "output" (-1 if none) */ }; struct cdata_struct { int *part_zeros; /* count of zeros for each element */ int *var_zeros; /* count of zeros for each variable */ int *parts_active; /* number of "active" parts for each var */ bool *is_unate; /* indicates given var is unate */ int vars_active; /* number of "active" variables */ int vars_unate; /* number of unate variables */ int best; /* best "binate" variable */ }; extern struct pla_types_struct pla_types[]; extern struct cube_struct cube, temp_cube_save; extern struct cdata_struct cdata, temp_cdata_save; #ifdef lint #define DISJOINT 0x5555 #else #if BPI == 32 #define DISJOINT 0x55555555 #else #define DISJOINT 0x5555 #endif ABC_NAMESPACE_HEADER_END #endif /* function declarations */ /* cofactor.c */ extern int binate_split_select(); /* cofactor.c */ extern pcover cubeunlist(); /* cofactor.c */ extern pcube *cofactor(); /* cofactor.c */ extern pcube *cube1list(); /* cofactor.c */ extern pcube *cube2list(); /* cofactor.c */ extern pcube *cube3list(); /* cofactor.c */ extern pcube *scofactor(); /* cofactor.c */ extern void massive_count(); /* compl.c */ extern pcover complement(); /* compl.c */ extern pcover simplify(); /* compl.c */ extern void simp_comp(); /* contain.c */ extern int d1_rm_equal(); /* contain.c */ extern int rm2_contain(); /* contain.c */ extern int rm2_equal(); /* contain.c */ extern int rm_contain(); /* contain.c */ extern int rm_equal(); /* contain.c */ extern int rm_rev_contain(); /* contain.c */ extern pset *sf_list(); /* contain.c */ extern pset *sf_sort(); /* contain.c */ extern pset_family d1merge(); /* contain.c */ extern pset_family dist_merge(); /* contain.c */ extern pset_family sf_contain(); /* contain.c */ extern pset_family sf_dupl(); /* contain.c */ extern pset_family sf_ind_contain(); /* contain.c */ extern pset_family sf_ind_unlist(); /* contain.c */ extern pset_family sf_merge(); /* contain.c */ extern pset_family sf_rev_contain(); /* contain.c */ extern pset_family sf_union(); /* contain.c */ extern pset_family sf_unlist(); /* cubestr.c */ extern void cube_setup(); /* cubestr.c */ extern void restore_cube_struct(); /* cubestr.c */ extern void save_cube_struct(); /* cubestr.c */ extern void setdown_cube(); /* cvrin.c */ extern void PLA_labels(); /* cvrin.c */ extern char *get_word(); /* cvrin.c */ extern int label_index(); /* cvrin.c */ extern int read_pla(); /* cvrin.c */ extern int read_symbolic(); /* cvrin.c */ extern pPLA new_PLA(); /* cvrin.c */ extern void PLA_summary(); /* cvrin.c */ extern void free_PLA(); /* cvrin.c */ extern void parse_pla(); /* cvrin.c */ extern void read_cube(); /* cvrin.c */ extern void skip_line(); /* cvrm.c */ extern void foreach_output_function(); /* cvrm.c */ extern int cubelist_partition(); /* cvrm.c */ extern int so_both_do_espresso(); /* cvrm.c */ extern int so_both_do_exact(); /* cvrm.c */ extern int so_both_save(); /* cvrm.c */ extern int so_do_espresso(); /* cvrm.c */ extern int so_do_exact(); /* cvrm.c */ extern int so_save(); /* cvrm.c */ extern pcover cof_output(); /* cvrm.c */ extern pcover lex_sort(); /* cvrm.c */ extern pcover mini_sort(); /* cvrm.c */ extern pcover random_order(); /* cvrm.c */ extern pcover size_sort(); /* cvrm.c */ extern pcover sort_reduce(); /* cvrm.c */ extern pcover uncof_output(); /* cvrm.c */ extern pcover unravel(); /* cvrm.c */ extern pcover unravel_range(); /* cvrm.c */ extern void so_both_espresso(); /* cvrm.c */ extern void so_espresso(); /* cvrmisc.c */ extern char *fmt_cost(); /* cvrmisc.c */ extern char *print_cost(); /* cvrmisc.c */ extern char *strsav(); /* cvrmisc.c */ extern void copy_cost(); /* cvrmisc.c */ extern void cover_cost(); /* cvrmisc.c */ extern void fatal(); /* cvrmisc.c */ extern void print_trace(); /* cvrmisc.c */ extern void size_stamp(); /* cvrmisc.c */ extern void totals(); /* cvrout.c */ extern char *fmt_cube(); /* cvrout.c */ extern char *fmt_expanded_cube(); /* cvrout.c */ extern char *pc1(); /* cvrout.c */ extern char *pc2(); /* cvrout.c */ extern char *pc3(); /* cvrout.c */ extern void makeup_labels(); /* cvrout.c */ extern void kiss_output(); /* cvrout.c */ extern void kiss_print_cube(); /* cvrout.c */ extern void output_symbolic_constraints(); /* cvrout.c */ extern void cprint(); /* cvrout.c */ extern void debug1_print(); /* cvrout.c */ extern void debug_print(); /* cvrout.c */ extern void eqn_output(); /* cvrout.c */ extern void fpr_header(); /* cvrout.c */ extern void fprint_pla(); /* cvrout.c */ extern void pls_group(); /* cvrout.c */ extern void pls_label(); /* cvrout.c */ extern void pls_output(); /* cvrout.c */ extern void print_cube(); /* cvrout.c */ extern void print_expanded_cube(); /* cvrout.c */ extern void sf_debug_print(); /* equiv.c */ extern void find_equiv_outputs(); /* equiv.c */ extern int check_equiv(); /* espresso.c */ extern pcover espresso(); /* essen.c */ extern bool essen_cube(); /* essen.c */ extern pcover cb_consensus(); /* essen.c */ extern pcover cb_consensus_dist0(); /* essen.c */ extern pcover essential(); /* exact.c */ extern pcover minimize_exact(); /* exact.c */ extern pcover minimize_exact_literals(); /* expand.c */ extern bool feasibly_covered(); /* expand.c */ extern int most_frequent(); /* expand.c */ extern pcover all_primes(); /* expand.c */ extern pcover expand(); /* expand.c */ extern pcover find_all_primes(); /* expand.c */ extern void elim_lowering(); /* expand.c */ extern void essen_parts(); /* expand.c */ extern void essen_raising(); /* expand.c */ extern void expand1(); /* expand.c */ extern void mincov(); /* expand.c */ extern void select_feasible(); /* expand.c */ extern void setup_BB_CC(); /* gasp.c */ extern pcover expand_gasp(); /* gasp.c */ extern pcover irred_gasp(); /* gasp.c */ extern pcover last_gasp(); /* gasp.c */ extern pcover super_gasp(); /* gasp.c */ extern void expand1_gasp(); /* getopt.c */ extern int util_getopt(); /* hack.c */ extern void find_dc_inputs(); /* hack.c */ extern void find_inputs(); /* hack.c */ extern void form_bitvector(); /* hack.c */ extern void map_dcset(); /* hack.c */ extern void map_output_symbolic(); /* hack.c */ extern void map_symbolic(); /* hack.c */ extern pcover map_symbolic_cover(); /* hack.c */ extern void symbolic_hack_labels(); /* irred.c */ extern bool cube_is_covered(); /* irred.c */ extern bool taut_special_cases(); /* irred.c */ extern bool tautology(); /* irred.c */ extern pcover irredundant(); /* irred.c */ extern void mark_irredundant(); /* irred.c */ extern void irred_split_cover(); /* irred.c */ extern sm_matrix *irred_derive_table(); /* map.c */ extern pset minterms(); /* map.c */ extern void explode(); /* map.c */ extern void map(); /* opo.c */ extern void output_phase_setup(); /* opo.c */ extern pPLA set_phase(); /* opo.c */ extern pcover opo(); /* opo.c */ extern pcube find_phase(); /* opo.c */ extern pset_family find_covers(); /* opo.c */ extern pset_family form_cover_table(); /* opo.c */ extern pset_family opo_leaf(); /* opo.c */ extern pset_family opo_recur(); /* opo.c */ extern void opoall(); /* opo.c */ extern void phase_assignment(); /* opo.c */ extern void repeated_phase_assignment(); /* pair.c */ extern void generate_all_pairs(); /* pair.c */ extern int **find_pairing_cost(); /* pair.c */ extern void find_best_cost(); /* pair.c */ extern int greedy_best_cost(); /* pair.c */ extern void minimize_pair(); /* pair.c */ extern void pair_free(); /* pair.c */ extern void pair_all(); /* pair.c */ extern pcover delvar(); /* pair.c */ extern pcover pairvar(); /* pair.c */ extern ppair pair_best_cost(); /* pair.c */ extern ppair pair_new(); /* pair.c */ extern ppair pair_save(); /* pair.c */ extern void print_pair(); /* pair.c */ extern void find_optimal_pairing(); /* pair.c */ extern void set_pair(); /* pair.c */ extern void set_pair1(); /* primes.c */ extern pcover primes_consensus(); /* reduce.c */ extern bool sccc_special_cases(); /* reduce.c */ extern pcover reduce(); /* reduce.c */ extern pcube reduce_cube(); /* reduce.c */ extern pcube sccc(); /* reduce.c */ extern pcube sccc_cube(); /* reduce.c */ extern pcube sccc_merge(); /* set.c */ extern bool set_andp(); /* set.c */ extern bool set_orp(); /* set.c */ extern bool setp_disjoint(); /* set.c */ extern bool setp_empty(); /* set.c */ extern bool setp_equal(); /* set.c */ extern bool setp_full(); /* set.c */ extern bool setp_implies(); /* set.c */ extern char *pbv1(); /* set.c */ extern char *ps1(); /* set.c */ extern int *sf_count(); /* set.c */ extern int *sf_count_restricted(); /* set.c */ extern int bit_index(); /* set.c */ extern int set_dist(); /* set.c */ extern int set_ord(); /* set.c */ extern void set_adjcnt(); /* set.c */ extern pset set_and(); /* set.c */ extern pset set_clear(); /* set.c */ extern pset set_copy(); /* set.c */ extern pset set_diff(); /* set.c */ extern pset set_fill(); /* set.c */ extern pset set_merge(); /* set.c */ extern pset set_or(); /* set.c */ extern pset set_xor(); /* set.c */ extern pset sf_and(); /* set.c */ extern pset sf_or(); /* set.c */ extern pset_family sf_active(); /* set.c */ extern pset_family sf_addcol(); /* set.c */ extern pset_family sf_addset(); /* set.c */ extern pset_family sf_append(); /* set.c */ extern pset_family sf_bm_read(); /* set.c */ extern pset_family sf_compress(); /* set.c */ extern pset_family sf_copy(); /* set.c */ extern pset_family sf_copy_col(); /* set.c */ extern pset_family sf_delc(); /* set.c */ extern pset_family sf_delcol(); /* set.c */ extern pset_family sf_inactive(); /* set.c */ extern pset_family sf_join(); /* set.c */ extern pset_family sf_new(); /* set.c */ extern pset_family sf_permute(); /* set.c */ extern pset_family sf_read(); /* set.c */ extern pset_family sf_save(); /* set.c */ extern pset_family sf_transpose(); /* set.c */ extern void set_write(); /* set.c */ extern void sf_bm_print(); /* set.c */ extern void sf_cleanup(); /* set.c */ extern void sf_delset(); /* set.c */ extern void sf_free(); /* set.c */ extern void sf_print(); /* set.c */ extern void sf_write(); /* setc.c */ extern bool ccommon(); /* setc.c */ extern bool cdist0(); /* setc.c */ extern bool full_row(); /* setc.c */ extern int ascend(); /* setc.c */ extern int cactive(); /* setc.c */ extern int cdist(); /* setc.c */ extern int cdist01(); /* setc.c */ extern int cvolume(); /* setc.c */ extern int d1_order(); /* setc.c */ extern int d1_order_size(); /* setc.c */ extern int desc1(); /* setc.c */ extern int descend(); /* setc.c */ extern int lex_order(); /* setc.c */ extern int lex_order1(); /* setc.c */ extern pset force_lower(); /* setc.c */ extern void consensus(); /* sharp.c */ extern pcover cb1_dsharp(); /* sharp.c */ extern pcover cb_dsharp(); /* sharp.c */ extern pcover cb_recur_dsharp(); /* sharp.c */ extern pcover cb_recur_sharp(); /* sharp.c */ extern pcover cb_sharp(); /* sharp.c */ extern pcover cv_dsharp(); /* sharp.c */ extern pcover cv_intersect(); /* sharp.c */ extern pcover cv_sharp(); /* sharp.c */ extern pcover dsharp(); /* sharp.c */ extern pcover make_disjoint(); /* sharp.c */ extern pcover sharp(); /* sminterf.c */pset do_sm_minimum_cover(); /* sparse.c */ extern pcover make_sparse(); /* sparse.c */ extern pcover mv_reduce(); /* unate.c */ extern pcover find_all_minimal_covers_petrick(); /* unate.c */ extern pcover map_cover_to_unate(); /* unate.c */ extern pcover map_unate_to_cover(); /* unate.c */ extern pset_family exact_minimum_cover(); /* unate.c */ extern pset_family gen_primes(); /* unate.c */ extern pset_family unate_compl(); /* unate.c */ extern pset_family unate_complement(); /* unate.c */ extern pset_family unate_intersect(); /* verify.c */ extern void PLA_permute(); /* verify.c */ extern bool PLA_verify(); /* verify.c */ extern bool check_consistency(); /* verify.c */ extern bool verify();