/**CFile**************************************************************** FileName [mapperCreate.c] PackageName [MVSIS 1.3: Multi-valued logic synthesis system.] Synopsis [Generic technology mapping engine.] Author [MVSIS Group] Affiliation [UC Berkeley] Date [Ver. 2.0. Started - June 1, 2004.] Revision [$Id: mapperCreate.c,v 1.15 2005/02/28 05:34:26 alanmi Exp $] ***********************************************************************/ #include "mapperInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static void Map_TableCreate( Map_Man_t * p ); static void Map_TableResize( Map_Man_t * p ); // hash key for the structural hash table static inline unsigned Map_HashKey2( Map_Node_t * p0, Map_Node_t * p1, int TableSize ) { return (unsigned)(((ABC_PTRUINT_T)(p0) + (ABC_PTRUINT_T)(p1) * 12582917) % TableSize); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Reads parameters from the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Map_ManReadInputNum( Map_Man_t * p ) { return p->nInputs; } int Map_ManReadOutputNum( Map_Man_t * p ) { return p->nOutputs; } int Map_ManReadBufNum( Map_Man_t * p ) { return Map_NodeVecReadSize(p->vMapBufs); } Map_Node_t ** Map_ManReadInputs ( Map_Man_t * p ) { return p->pInputs; } Map_Node_t ** Map_ManReadOutputs( Map_Man_t * p ) { return p->pOutputs; } Map_Node_t ** Map_ManReadBufs( Map_Man_t * p ) { return Map_NodeVecReadArray(p->vMapBufs); } Map_Node_t * Map_ManReadBufDriver( Map_Man_t * p, int i ) { return Map_ManReadBufs(p)[i]->p1; } Map_Node_t * Map_ManReadConst1 ( Map_Man_t * p ) { return p->pConst1; } Map_Time_t * Map_ManReadInputArrivals( Map_Man_t * p ) { return p->pInputArrivals; } Map_Time_t * Map_ManReadOutputRequireds( Map_Man_t * p ) { return p->pOutputRequireds; } Mio_Library_t * Map_ManReadGenLib ( Map_Man_t * p ) { return p->pSuperLib->pGenlib; } int Map_ManReadVerbose( Map_Man_t * p ) { return p->fVerbose; } float Map_ManReadAreaFinal( Map_Man_t * p ) { return p->AreaFinal; } float Map_ManReadRequiredGlo( Map_Man_t * p ) { return p->fRequiredGlo; } void Map_ManSetOutputNames( Map_Man_t * p, char ** ppNames ) { p->ppOutputNames = ppNames;} void Map_ManSetAreaRecovery( Map_Man_t * p, int fAreaRecovery ) { p->fAreaRecovery = fAreaRecovery;} void Map_ManSetDelayTarget( Map_Man_t * p, float DelayTarget ) { p->DelayTarget = DelayTarget;} void Map_ManSetInputArrivals( Map_Man_t * p, Map_Time_t * pArrivals ) { p->pInputArrivals = pArrivals; } void Map_ManSetOutputRequireds( Map_Man_t * p, Map_Time_t * pRequireds ) { p->pOutputRequireds = pRequireds; } void Map_ManSetObeyFanoutLimits( Map_Man_t * p, int fObeyFanoutLimits ) { p->fObeyFanoutLimits = fObeyFanoutLimits; } void Map_ManSetNumIterations( Map_Man_t * p, int nIterations ) { p->nIterations = nIterations; } int Map_ManReadFanoutViolations( Map_Man_t * p ) { return p->nFanoutViolations; } void Map_ManSetFanoutViolations( Map_Man_t * p, int nVio ) { p->nFanoutViolations = nVio; } void Map_ManSetChoiceNodeNum( Map_Man_t * p, int nChoiceNodes ) { p->nChoiceNodes = nChoiceNodes; } void Map_ManSetChoiceNum( Map_Man_t * p, int nChoices ) { p->nChoices = nChoices; } void Map_ManSetVerbose( Map_Man_t * p, int fVerbose ) { p->fVerbose = fVerbose; } void Map_ManSetSwitching( Map_Man_t * p, int fSwitching ) { p->fSwitching = fSwitching; } /**Function************************************************************* Synopsis [Reads parameters from the mapping node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Man_t * Map_NodeReadMan( Map_Node_t * p ) { return p->p; } char * Map_NodeReadData( Map_Node_t * p, int fPhase ) { return fPhase? p->pData1 : p->pData0; } int Map_NodeReadNum( Map_Node_t * p ) { return p->Num; } int Map_NodeReadLevel( Map_Node_t * p ) { return Map_Regular(p)->Level; } Map_Cut_t * Map_NodeReadCuts( Map_Node_t * p ) { return p->pCuts; } Map_Cut_t * Map_NodeReadCutBest( Map_Node_t * p, int fPhase ) { return p->pCutBest[fPhase]; } Map_Node_t * Map_NodeReadOne( Map_Node_t * p ) { return p->p1; } Map_Node_t * Map_NodeReadTwo( Map_Node_t * p ) { return p->p2; } void Map_NodeSetData( Map_Node_t * p, int fPhase, char * pData ) { if (fPhase) p->pData1 = pData; else p->pData0 = pData; } void Map_NodeSetNextE( Map_Node_t * p, Map_Node_t * pNextE ) { p->pNextE = pNextE; } void Map_NodeSetRepr( Map_Node_t * p, Map_Node_t * pRepr ) { p->pRepr = pRepr; } void Map_NodeSetSwitching( Map_Node_t * p, float Switching ) { p->Switching = Switching; } /**Function************************************************************* Synopsis [Checks the type of the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Map_NodeIsConst( Map_Node_t * p ) { return (Map_Regular(p))->Num == -1; } int Map_NodeIsVar( Map_Node_t * p ) { return (Map_Regular(p))->p1 == NULL && (Map_Regular(p))->Num >= 0; } int Map_NodeIsBuf( Map_Node_t * p ) { return (Map_Regular(p))->p1 != NULL && (Map_Regular(p))->p2 == NULL; } int Map_NodeIsAnd( Map_Node_t * p ) { return (Map_Regular(p))->p1 != NULL && (Map_Regular(p))->p2 != NULL; } int Map_NodeComparePhase( Map_Node_t * p1, Map_Node_t * p2 ) { assert( !Map_IsComplement(p1) ); assert( !Map_IsComplement(p2) ); return p1->fInv ^ p2->fInv; } /**Function************************************************************* Synopsis [Reads parameters from the cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Super_t * Map_CutReadSuperBest( Map_Cut_t * p, int fPhase ) { return p->M[fPhase].pSuperBest;} Map_Super_t * Map_CutReadSuper0( Map_Cut_t * p ) { return p->M[0].pSuperBest;} Map_Super_t * Map_CutReadSuper1( Map_Cut_t * p ) { return p->M[1].pSuperBest;} int Map_CutReadLeavesNum( Map_Cut_t * p ) { return p->nLeaves; } Map_Node_t ** Map_CutReadLeaves( Map_Cut_t * p ) { return p->ppLeaves; } unsigned Map_CutReadPhaseBest( Map_Cut_t * p, int fPhase ) { return p->M[fPhase].uPhaseBest;} unsigned Map_CutReadPhase0( Map_Cut_t * p ) { return p->M[0].uPhaseBest;} unsigned Map_CutReadPhase1( Map_Cut_t * p ) { return p->M[1].uPhaseBest;} Map_Cut_t * Map_CutReadNext( Map_Cut_t * p ) { return p->pNext; } /**Function************************************************************* Synopsis [Reads parameters from the supergate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ char * Map_SuperReadFormula( Map_Super_t * p ) { return p->pFormula; } Mio_Gate_t * Map_SuperReadRoot( Map_Super_t * p ) { return p->pRoot; } int Map_SuperReadNum( Map_Super_t * p ) { return p->Num; } Map_Super_t ** Map_SuperReadFanins( Map_Super_t * p ) { return p->pFanins; } int Map_SuperReadFaninNum( Map_Super_t * p ) { return p->nFanins; } Map_Super_t * Map_SuperReadNext( Map_Super_t * p ) { return p->pNext; } int Map_SuperReadNumPhases( Map_Super_t * p ) { return p->nPhases; } unsigned char * Map_SuperReadPhases( Map_Super_t * p ) { return p->uPhases; } int Map_SuperReadFanoutLimit( Map_Super_t * p ) { return p->nFanLimit;} Mio_Library_t * Map_SuperLibReadGenLib( Map_SuperLib_t * p ) { return p->pGenlib; } float Map_SuperLibReadAreaInv( Map_SuperLib_t * p ) { return p->AreaInv; } Map_Time_t Map_SuperLibReadDelayInv( Map_SuperLib_t * p ) { return p->tDelayInv;} int Map_SuperLibReadVarsMax( Map_SuperLib_t * p ) { return p->nVarsMax; } /**Function************************************************************* Synopsis [Create the mapping manager.] Description [The number of inputs and outputs is assumed to be known is advance. It is much simpler to have them fixed upfront. When it comes to representing the object graph in the form of AIG, the resulting manager is similar to the regular AIG manager, except that it does not use reference counting (and therefore does not have garbage collections). It does have table resizing. The data structure is more flexible to represent additional information needed for mapping.] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Man_t * Map_ManCreate( int nInputs, int nOutputs, int fVerbose ) { Map_Man_t * p; int i; // derive the supergate library if ( Abc_FrameReadLibSuper() == NULL ) { printf( "The supergate library is not specified. Use \"read_super\".\n" ); return NULL; } // start the manager p = ABC_ALLOC( Map_Man_t, 1 ); memset( p, 0, sizeof(Map_Man_t) ); p->pSuperLib = (Map_SuperLib_t *)Abc_FrameReadLibSuper(); p->nVarsMax = p->pSuperLib->nVarsMax; p->fVerbose = fVerbose; p->fEpsilon = (float)0.001; assert( p->nVarsMax > 0 ); if ( p->nVarsMax == 5 ) Extra_Truth4VarN( &p->uCanons, &p->uPhases, &p->pCounters, 8 ); // start various data structures Map_TableCreate( p ); Map_MappingSetupTruthTables( p->uTruths ); Map_MappingSetupTruthTablesLarge( p->uTruthsLarge ); // printf( "Node = %d bytes. Cut = %d bytes. Super = %d bytes.\n", sizeof(Map_Node_t), sizeof(Map_Cut_t), sizeof(Map_Super_t) ); p->mmNodes = Extra_MmFixedStart( sizeof(Map_Node_t) ); p->mmCuts = Extra_MmFixedStart( sizeof(Map_Cut_t) ); // make sure the constant node will get index -1 p->nNodes = -1; // create the constant node p->pConst1 = Map_NodeCreate( p, NULL, NULL ); p->vMapObjs = Map_NodeVecAlloc( 100 ); p->vMapBufs = Map_NodeVecAlloc( 100 ); p->vVisited = Map_NodeVecAlloc( 100 ); // create the PI nodes p->nInputs = nInputs; p->pInputs = ABC_ALLOC( Map_Node_t *, nInputs ); for ( i = 0; i < nInputs; i++ ) p->pInputs[i] = Map_NodeCreate( p, NULL, NULL ); // create the place for the output nodes p->nOutputs = nOutputs; p->pOutputs = ABC_ALLOC( Map_Node_t *, nOutputs ); memset( p->pOutputs, 0, sizeof(Map_Node_t *) * nOutputs ); return p; } /**Function************************************************************* Synopsis [Deallocates the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_ManFree( Map_Man_t * p ) { // int i; // for ( i = 0; i < p->vMapObjs->nSize; i++ ) // Map_NodeVecFree( p->vMapObjs->pArray[i]->vFanouts ); // Map_NodeVecFree( p->pConst1->vFanouts ); Map_NodeVecFree( p->vMapObjs ); Map_NodeVecFree( p->vMapBufs ); Map_NodeVecFree( p->vVisited ); if ( p->uCanons ) ABC_FREE( p->uCanons ); if ( p->uPhases ) ABC_FREE( p->uPhases ); if ( p->pCounters ) ABC_FREE( p->pCounters ); Extra_MmFixedStop( p->mmNodes ); Extra_MmFixedStop( p->mmCuts ); ABC_FREE( p->pNodeDelays ); ABC_FREE( p->pInputArrivals ); ABC_FREE( p->pOutputRequireds ); ABC_FREE( p->pInputs ); ABC_FREE( p->pOutputs ); ABC_FREE( p->pBins ); ABC_FREE( p->ppOutputNames ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Creates node delays.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_ManCreateNodeDelays( Map_Man_t * p, int LogFan ) { Map_Node_t * pNode; int k; assert( p->pNodeDelays == NULL ); p->pNodeDelays = ABC_CALLOC( float, p->vMapObjs->nSize ); for ( k = 0; k < p->vMapObjs->nSize; k++ ) { pNode = p->vMapObjs->pArray[k]; if ( pNode->nRefs == 0 ) continue; p->pNodeDelays[k] = 0.014426 * LogFan * p->pSuperLib->tDelayInv.Worst * log( (double)pNode->nRefs ); // 1.4426 = 1/ln(2) // printf( "%d = %d (%.2f) ", k, pNode->nRefs, p->pNodeDelays[k] ); } // printf( "\n" ); } /**Function************************************************************* Synopsis [Deallocates the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_ManPrintTimeStats( Map_Man_t * p ) { printf( "N-canonical = %d. Matchings = %d. Phases = %d. ", p->nCanons, p->nMatches, p->nPhases ); printf( "Choice nodes = %d. Choices = %d.\n", p->nChoiceNodes, p->nChoices ); ABC_PRT( "ToMap", p->timeToMap ); ABC_PRT( "Cuts ", p->timeCuts ); ABC_PRT( "Truth", p->timeTruth ); ABC_PRT( "Match", p->timeMatch ); ABC_PRT( "Area ", p->timeArea ); ABC_PRT( "Sweep", p->timeSweep ); ABC_PRT( "ToNet", p->timeToNet ); ABC_PRT( "TOTAL", p->timeTotal ); if ( p->time1 ) { ABC_PRT( "time1", p->time1 ); } if ( p->time2 ) { ABC_PRT( "time2", p->time2 ); } if ( p->time3 ) { ABC_PRT( "time3", p->time3 ); } } /**Function************************************************************* Synopsis [Prints the mapping stats.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_ManPrintStatsToFile( char * pName, float Area, float Delay, abctime Time ) { FILE * pTable; pTable = fopen( "map_stats.txt", "a+" ); fprintf( pTable, "%s ", pName ); fprintf( pTable, "%4.2f ", Area ); fprintf( pTable, "%4.2f ", Delay ); fprintf( pTable, "%4.2f\n", (float)(Time)/(float)(CLOCKS_PER_SEC) ); fclose( pTable ); } /**Function************************************************************* Synopsis [Creates a new node.] Description [This procedure should be called to create the constant node and the PI nodes first.] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Node_t * Map_NodeCreate( Map_Man_t * p, Map_Node_t * p1, Map_Node_t * p2 ) { Map_Node_t * pNode; // create the node pNode = (Map_Node_t *)Extra_MmFixedEntryFetch( p->mmNodes ); memset( pNode, 0, sizeof(Map_Node_t) ); pNode->tRequired[0].Rise = pNode->tRequired[0].Fall = pNode->tRequired[0].Worst = MAP_FLOAT_LARGE; pNode->tRequired[1].Rise = pNode->tRequired[1].Fall = pNode->tRequired[1].Worst = MAP_FLOAT_LARGE; pNode->p1 = p1; pNode->p2 = p2; pNode->p = p; // set the number of this node pNode->Num = p->nNodes++; // place to store the fanouts // pNode->vFanouts = Map_NodeVecAlloc( 5 ); // store this node in the internal array if ( pNode->Num >= 0 ) Map_NodeVecPush( p->vMapObjs, pNode ); else pNode->fInv = 1; // set the level of this node if ( p1 ) { #ifdef MAP_ALLOCATE_FANOUT // create the fanout info Map_NodeAddFaninFanout( Map_Regular(p1), pNode ); if ( p2 ) Map_NodeAddFaninFanout( Map_Regular(p2), pNode ); #endif if ( p2 ) { pNode->Level = 1 + MAP_MAX(Map_Regular(pNode->p1)->Level, Map_Regular(pNode->p2)->Level); pNode->fInv = Map_NodeIsSimComplement(p1) & Map_NodeIsSimComplement(p2); } else { pNode->Level = Map_Regular(pNode->p1)->Level; pNode->fInv = Map_NodeIsSimComplement(p1); } } // reference the inputs (will be used to compute the number of fanouts) if ( p1 ) Map_NodeRef(p1); if ( p2 ) Map_NodeRef(p2); pNode->nRefEst[0] = pNode->nRefEst[1] = -1; return pNode; } /**Function************************************************************* Synopsis [Create the unique table of AND gates.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_TableCreate( Map_Man_t * pMan ) { assert( pMan->pBins == NULL ); pMan->nBins = Abc_PrimeCudd(5000); pMan->pBins = ABC_ALLOC( Map_Node_t *, pMan->nBins ); memset( pMan->pBins, 0, sizeof(Map_Node_t *) * pMan->nBins ); pMan->nNodes = 0; } /**Function************************************************************* Synopsis [Looks up the AND2 node in the unique table.] Description [This procedure implements one-level hashing. All the nodes are hashed by their children. If the node with the same children was already created, it is returned by the call to this procedure. If it does not exist, this procedure creates a new node with these children. ] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Node_t * Map_NodeAnd( Map_Man_t * pMan, Map_Node_t * p1, Map_Node_t * p2 ) { Map_Node_t * pEnt; unsigned Key; if ( p1 == p2 ) return p1; if ( p1 == Map_Not(p2) ) return Map_Not(pMan->pConst1); if ( Map_NodeIsConst(p1) ) { if ( p1 == pMan->pConst1 ) return p2; return Map_Not(pMan->pConst1); } if ( Map_NodeIsConst(p2) ) { if ( p2 == pMan->pConst1 ) return p1; return Map_Not(pMan->pConst1); } if ( Map_Regular(p1)->Num > Map_Regular(p2)->Num ) pEnt = p1, p1 = p2, p2 = pEnt; Key = Map_HashKey2( p1, p2, pMan->nBins ); for ( pEnt = pMan->pBins[Key]; pEnt; pEnt = pEnt->pNext ) if ( pEnt->p1 == p1 && pEnt->p2 == p2 ) return pEnt; // resize the table if ( pMan->nNodes >= 2 * pMan->nBins ) { Map_TableResize( pMan ); Key = Map_HashKey2( p1, p2, pMan->nBins ); } // create the new node pEnt = Map_NodeCreate( pMan, p1, p2 ); // add the node to the corresponding linked list in the table pEnt->pNext = pMan->pBins[Key]; pMan->pBins[Key] = pEnt; return pEnt; } /**Function************************************************************* Synopsis [Resizes the table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_TableResize( Map_Man_t * pMan ) { Map_Node_t ** pBinsNew; Map_Node_t * pEnt, * pEnt2; int nBinsNew, Counter, i; abctime clk; unsigned Key; clk = Abc_Clock(); // get the new table size nBinsNew = Abc_PrimeCudd(2 * pMan->nBins); // allocate a new array pBinsNew = ABC_ALLOC( Map_Node_t *, nBinsNew ); memset( pBinsNew, 0, sizeof(Map_Node_t *) * nBinsNew ); // rehash the entries from the old table Counter = 0; for ( i = 0; i < pMan->nBins; i++ ) for ( pEnt = pMan->pBins[i], pEnt2 = pEnt? pEnt->pNext: NULL; pEnt; pEnt = pEnt2, pEnt2 = pEnt? pEnt->pNext: NULL ) { Key = Map_HashKey2( pEnt->p1, pEnt->p2, nBinsNew ); pEnt->pNext = pBinsNew[Key]; pBinsNew[Key] = pEnt; Counter++; } assert( Counter == pMan->nNodes - pMan->nInputs ); if ( pMan->fVerbose ) { // printf( "Increasing the unique table size from %6d to %6d. ", pMan->nBins, nBinsNew ); // ABC_PRT( "Time", Abc_Clock() - clk ); } // replace the table and the parameters ABC_FREE( pMan->pBins ); pMan->pBins = pBinsNew; pMan->nBins = nBinsNew; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Node_t * Map_NodeBuf( Map_Man_t * p, Map_Node_t * p1 ) { Map_Node_t * pNode = Map_NodeCreate( p, p1, NULL ); Map_NodeVecPush( p->vMapBufs, pNode ); return pNode; } /**Function************************************************************* Synopsis [Sets the node to be equivalent to the given one.] Description [This procedure is a work-around for the equivalence check. Does not verify the equivalence. Use at the user's risk.] SideEffects [] SeeAlso [] ***********************************************************************/ void Map_NodeSetChoice( Map_Man_t * pMan, Map_Node_t * pNodeOld, Map_Node_t * pNodeNew ) { pNodeNew->pNextE = pNodeOld->pNextE; pNodeOld->pNextE = pNodeNew; pNodeNew->pRepr = pNodeOld; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END