/**CFile**************************************************************** FileName [amapParse.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Technology mapper for standard cells.] Synopsis [Parses representations of gates.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: amapParse.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "amapInt.h" #include "aig/hop/hop.h" #include "bool/kit/kit.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// // the list of operation symbols to be used in expressions #define AMAP_EQN_SYM_OPEN '(' // opening paranthesis #define AMAP_EQN_SYM_CLOSE ')' // closing paranthesis #define AMAP_EQN_SYM_CONST0 '0' // constant 0 #define AMAP_EQN_SYM_CONST1 '1' // constant 1 #define AMAP_EQN_SYM_NEG '!' // negation before the variable #define AMAP_EQN_SYM_NEGAFT '\'' // negation after the variable #define AMAP_EQN_SYM_AND '*' // logic AND #define AMAP_EQN_SYM_AND2 '&' // logic AND #define AMAP_EQN_SYM_XOR '^' // logic XOR #define AMAP_EQN_SYM_OR '+' // logic OR #define AMAP_EQN_SYM_OR2 '|' // logic OR // the list of opcodes (also specifying operation precedence) #define AMAP_EQN_OPER_NEG 10 // negation #define AMAP_EQN_OPER_AND 9 // logic AND #define AMAP_EQN_OPER_XOR 8 // logic XOR #define AMAP_EQN_OPER_OR 7 // logic OR #define AMAP_EQN_OPER_MARK 1 // OpStack token standing for an opening paranthesis // these are values of the internal Flag #define AMAP_EQN_FLAG_START 1 // after the opening parenthesis #define AMAP_EQN_FLAG_VAR 2 // after operation is received #define AMAP_EQN_FLAG_OPER 3 // after operation symbol is received #define AMAP_EQN_FLAG_ERROR 4 // when error is detected //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Performs the operation on the top entries in the stack.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Hop_Obj_t * Amap_ParseFormulaOper( Hop_Man_t * pMan, Vec_Ptr_t * pStackFn, int Oper ) { Hop_Obj_t * gArg1, * gArg2, * gFunc; // perform the given operation gArg2 = (Hop_Obj_t *)Vec_PtrPop( pStackFn ); gArg1 = (Hop_Obj_t *)Vec_PtrPop( pStackFn ); if ( Oper == AMAP_EQN_OPER_AND ) gFunc = Hop_And( pMan, gArg1, gArg2 ); else if ( Oper == AMAP_EQN_OPER_OR ) gFunc = Hop_Or( pMan, gArg1, gArg2 ); else if ( Oper == AMAP_EQN_OPER_XOR ) gFunc = Hop_Exor( pMan, gArg1, gArg2 ); else return NULL; // Cudd_Ref( gFunc ); // Cudd_RecursiveDeref( dd, gArg1 ); // Cudd_RecursiveDeref( dd, gArg2 ); Vec_PtrPush( pStackFn, gFunc ); return gFunc; } /**Function************************************************************* Synopsis [Derives the AIG corresponding to the equation.] Description [Takes the stream to output messages, the formula, the vector of variable names and the AIG manager.] SideEffects [] SeeAlso [] ***********************************************************************/ Hop_Obj_t * Amap_ParseFormula( FILE * pOutput, char * pFormInit, Vec_Ptr_t * vVarNames, Hop_Man_t * pMan ) { char * pFormula; Vec_Ptr_t * pStackFn; Vec_Int_t * pStackOp; Hop_Obj_t * gFunc; char * pTemp, * pName; int nParans, fFound, Flag; int Oper, Oper1, Oper2; int i, v; // make sure that the number of opening and closing parantheses is the same nParans = 0; for ( pTemp = pFormInit; *pTemp; pTemp++ ) if ( *pTemp == '(' ) nParans++; else if ( *pTemp == ')' ) nParans--; if ( nParans != 0 ) { fprintf( pOutput, "Amap_ParseFormula(): Different number of opening and closing parantheses ().\n" ); return NULL; } // copy the formula pFormula = ABC_ALLOC( char, strlen(pFormInit) + 3 ); sprintf( pFormula, "(%s)", pFormInit ); // start the stacks pStackFn = Vec_PtrAlloc( 100 ); pStackOp = Vec_IntAlloc( 100 ); Flag = AMAP_EQN_FLAG_START; for ( pTemp = pFormula; *pTemp; pTemp++ ) { switch ( *pTemp ) { // skip all spaces, tabs, and end-of-lines case ' ': case '\t': case '\r': case '\n': continue; case AMAP_EQN_SYM_CONST0: Vec_PtrPush( pStackFn, Hop_ManConst0(pMan) ); // Cudd_Ref( b0 ); if ( Flag == AMAP_EQN_FLAG_VAR ) { fprintf( pOutput, "Amap_ParseFormula(): No operation symbol before constant 0.\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } Flag = AMAP_EQN_FLAG_VAR; break; case AMAP_EQN_SYM_CONST1: Vec_PtrPush( pStackFn, Hop_ManConst1(pMan) ); // Cudd_Ref( b1 ); if ( Flag == AMAP_EQN_FLAG_VAR ) { fprintf( pOutput, "Amap_ParseFormula(): No operation symbol before constant 1.\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } Flag = AMAP_EQN_FLAG_VAR; break; case AMAP_EQN_SYM_NEG: if ( Flag == AMAP_EQN_FLAG_VAR ) {// if NEGBEF follows a variable, AND is assumed Vec_IntPush( pStackOp, AMAP_EQN_OPER_AND ); Flag = AMAP_EQN_FLAG_OPER; } Vec_IntPush( pStackOp, AMAP_EQN_OPER_NEG ); break; case AMAP_EQN_SYM_NEGAFT: if ( Flag != AMAP_EQN_FLAG_VAR ) {// if there is no variable before NEGAFT, it is an error fprintf( pOutput, "Amap_ParseFormula(): No variable is specified before the negation suffix.\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } else // if ( Flag == PARSE_FLAG_VAR ) Vec_PtrPush( pStackFn, Hop_Not( (Hop_Obj_t *)Vec_PtrPop(pStackFn) ) ); break; case AMAP_EQN_SYM_AND: case AMAP_EQN_SYM_AND2: case AMAP_EQN_SYM_OR: case AMAP_EQN_SYM_OR2: case AMAP_EQN_SYM_XOR: if ( Flag != AMAP_EQN_FLAG_VAR ) { fprintf( pOutput, "Amap_ParseFormula(): There is no variable before AND, EXOR, or OR.\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } if ( *pTemp == AMAP_EQN_SYM_AND || *pTemp == AMAP_EQN_SYM_AND2 ) Vec_IntPush( pStackOp, AMAP_EQN_OPER_AND ); else if ( *pTemp == AMAP_EQN_SYM_OR || *pTemp == AMAP_EQN_SYM_OR2 ) Vec_IntPush( pStackOp, AMAP_EQN_OPER_OR ); else //if ( *pTemp == AMAP_EQN_SYM_XOR ) Vec_IntPush( pStackOp, AMAP_EQN_OPER_XOR ); Flag = AMAP_EQN_FLAG_OPER; break; case AMAP_EQN_SYM_OPEN: if ( Flag == AMAP_EQN_FLAG_VAR ) { Vec_IntPush( pStackOp, AMAP_EQN_OPER_AND ); // fprintf( pOutput, "Amap_ParseFormula(): An opening paranthesis follows a var without operation sign.\n" ); // Flag = AMAP_EQN_FLAG_ERROR; // break; } Vec_IntPush( pStackOp, AMAP_EQN_OPER_MARK ); // after an opening bracket, it feels like starting over again Flag = AMAP_EQN_FLAG_START; break; case AMAP_EQN_SYM_CLOSE: if ( Vec_IntSize( pStackOp ) != 0 ) { while ( 1 ) { if ( Vec_IntSize( pStackOp ) == 0 ) { fprintf( pOutput, "Amap_ParseFormula(): There is no opening paranthesis\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } Oper = Vec_IntPop( pStackOp ); if ( Oper == AMAP_EQN_OPER_MARK ) break; // perform the given operation if ( Amap_ParseFormulaOper( pMan, pStackFn, Oper ) == NULL ) { fprintf( pOutput, "Amap_ParseFormula(): Unknown operation\n" ); ABC_FREE( pFormula ); Vec_PtrFreeP( &pStackFn ); Vec_IntFreeP( &pStackOp ); return NULL; } } } else { fprintf( pOutput, "Amap_ParseFormula(): There is no opening paranthesis\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } if ( Flag != AMAP_EQN_FLAG_ERROR ) Flag = AMAP_EQN_FLAG_VAR; break; default: // scan the next name for ( i = 0; pTemp[i] && pTemp[i] != ' ' && pTemp[i] != '\t' && pTemp[i] != '\r' && pTemp[i] != '\n' && pTemp[i] != AMAP_EQN_SYM_AND && pTemp[i] != AMAP_EQN_SYM_AND2 && pTemp[i] != AMAP_EQN_SYM_OR && pTemp[i] != AMAP_EQN_SYM_OR2 && pTemp[i] != AMAP_EQN_SYM_XOR && pTemp[i] != AMAP_EQN_SYM_NEGAFT && pTemp[i] != AMAP_EQN_SYM_CLOSE; i++ ) { if ( pTemp[i] == AMAP_EQN_SYM_NEG || pTemp[i] == AMAP_EQN_SYM_OPEN ) { fprintf( pOutput, "Amap_ParseFormula(): The negation sign or an opening paranthesis inside the variable name.\n" ); Flag = AMAP_EQN_FLAG_ERROR; break; } } // variable name is found fFound = 0; Vec_PtrForEachEntry( char *, vVarNames, pName, v ) if ( strncmp(pTemp, pName, i) == 0 && strlen(pName) == (unsigned)i ) { pTemp += i-1; fFound = 1; break; } if ( !fFound ) { fprintf( pOutput, "Amap_ParseFormula(): The parser cannot find var \"%s\" in the input var list.\n", pTemp ); Flag = AMAP_EQN_FLAG_ERROR; break; } /* if ( Flag == AMAP_EQN_FLAG_VAR ) { fprintf( pOutput, "Amap_ParseFormula(): The variable name \"%s\" follows another var without operation sign.\n", pTemp ); Flag = AMAP_EQN_FLAG_ERROR; break; } */ if ( Flag == AMAP_EQN_FLAG_VAR ) Vec_IntPush( pStackOp, AMAP_EQN_OPER_AND ); Vec_PtrPush( pStackFn, Hop_IthVar( pMan, v ) ); // Cudd_Ref( pbVars[v] ); Flag = AMAP_EQN_FLAG_VAR; break; } if ( Flag == AMAP_EQN_FLAG_ERROR ) break; // error exit else if ( Flag == AMAP_EQN_FLAG_START ) continue; // go on parsing else if ( Flag == AMAP_EQN_FLAG_VAR ) while ( 1 ) { // check if there are negations in the OpStack if ( Vec_IntSize( pStackOp ) == 0 ) break; Oper = Vec_IntPop( pStackOp ); if ( Oper != AMAP_EQN_OPER_NEG ) { Vec_IntPush( pStackOp, Oper ); break; } else { Vec_PtrPush( pStackFn, Hop_Not((Hop_Obj_t *)Vec_PtrPop(pStackFn)) ); } } else // if ( Flag == AMAP_EQN_FLAG_OPER ) while ( 1 ) { // execute all the operations in the OpStack // with precedence higher or equal than the last one Oper1 = Vec_IntPop( pStackOp ); // the last operation if ( Vec_IntSize( pStackOp ) == 0 ) { // if it is the only operation, push it back Vec_IntPush( pStackOp, Oper1 ); break; } Oper2 = Vec_IntPop( pStackOp ); // the operation before the last one if ( Oper2 >= Oper1 ) { // if Oper2 precedence is higher or equal, execute it if ( Amap_ParseFormulaOper( pMan, pStackFn, Oper2 ) == NULL ) { fprintf( pOutput, "Amap_ParseFormula(): Unknown operation\n" ); ABC_FREE( pFormula ); Vec_PtrFreeP( &pStackFn ); Vec_IntFreeP( &pStackOp ); return NULL; } Vec_IntPush( pStackOp, Oper1 ); // push the last operation back } else { // if Oper2 precedence is lower, push them back and done Vec_IntPush( pStackOp, Oper2 ); Vec_IntPush( pStackOp, Oper1 ); break; } } } if ( Flag != AMAP_EQN_FLAG_ERROR ) { if ( Vec_PtrSize(pStackFn) != 0 ) { gFunc = (Hop_Obj_t *)Vec_PtrPop(pStackFn); if ( Vec_PtrSize(pStackFn) == 0 ) if ( Vec_IntSize( pStackOp ) == 0 ) { // Cudd_Deref( gFunc ); ABC_FREE( pFormula ); Vec_PtrFreeP( &pStackFn ); Vec_IntFreeP( &pStackOp ); return gFunc; } else fprintf( pOutput, "Amap_ParseFormula(): Something is left in the operation stack\n" ); else fprintf( pOutput, "Amap_ParseFormula(): Something is left in the function stack\n" ); } else fprintf( pOutput, "Amap_ParseFormula(): The input string is empty\n" ); } ABC_FREE( pFormula ); Vec_PtrFreeP( &pStackFn ); Vec_IntFreeP( &pStackOp ); return NULL; } /**Function************************************************************* Synopsis [Parses equations for the gates.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Amap_LibParseEquations( Amap_Lib_t * p, int fVerbose ) { // extern int Kit_TruthSupportSize( unsigned * pTruth, int nVars ); Hop_Man_t * pMan; Hop_Obj_t * pObj; Vec_Ptr_t * vNames; Vec_Int_t * vTruth; Amap_Gat_t * pGate; Amap_Pin_t * pPin; unsigned * pTruth; int i, nPinMax; nPinMax = Amap_LibNumPinsMax(p); if ( nPinMax > AMAP_MAXINS ) printf( "Gates with more than %d inputs will be ignored.\n", AMAP_MAXINS ); vTruth = Vec_IntAlloc( 1 << 16 ); vNames = Vec_PtrAlloc( 100 ); pMan = Hop_ManStart(); Hop_IthVar( pMan, nPinMax - 1 ); Vec_PtrForEachEntry( Amap_Gat_t *, p->vGates, pGate, i ) { if ( pGate->nPins == 0 ) { pGate->pFunc = (unsigned *)Aig_MmFlexEntryFetch( p->pMemGates, 4 ); if ( strcmp( pGate->pForm, AMAP_STRING_CONST0 ) == 0 ) pGate->pFunc[0] = 0; else if ( strcmp( pGate->pForm, AMAP_STRING_CONST1 ) == 0 ) pGate->pFunc[0] = ~0; else { printf( "Cannot parse formula \"%s\" of gate \"%s\" with no pins.\n", pGate->pForm, pGate->pName ); break; } continue; } if ( pGate->nPins > AMAP_MAXINS ) continue; Vec_PtrClear( vNames ); Amap_GateForEachPin( pGate, pPin ) Vec_PtrPush( vNames, pPin->pName ); pObj = Amap_ParseFormula( stdout, pGate->pForm, vNames, pMan ); if ( pObj == NULL ) break; pTruth = Hop_ManConvertAigToTruth( pMan, pObj, pGate->nPins, vTruth, 0 ); if ( Kit_TruthSupportSize(pTruth, pGate->nPins) < (int)pGate->nPins ) { if ( fVerbose ) printf( "Skipping gate \"%s\" because its output \"%s\" does not depend on all input variables.\n", pGate->pName, pGate->pForm ); continue; } pGate->pFunc = (unsigned *)Aig_MmFlexEntryFetch( p->pMemGates, sizeof(unsigned)*Abc_TruthWordNum(pGate->nPins) ); memcpy( pGate->pFunc, pTruth, sizeof(unsigned)*Abc_TruthWordNum(pGate->nPins) ); } Vec_PtrFree( vNames ); Vec_IntFree( vTruth ); Hop_ManStop( pMan ); return i == Vec_PtrSize(p->vGates); } /**Function************************************************************* Synopsis [Parses equations for the gates.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Amap_LibParseTest( char * pFileName ) { int fVerbose = 0; Amap_Lib_t * p; abctime clk = Abc_Clock(); p = Amap_LibReadFile( pFileName, fVerbose ); if ( p == NULL ) return; Amap_LibParseEquations( p, fVerbose ); Amap_LibFree( p ); ABC_PRT( "Total time", Abc_Clock() - clk ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END