/**CFile**************************************************************** FileName [ivyRwt.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [And-Inverter Graph package.] Synopsis [Rewriting based on precomputation.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - May 11, 2006.] Revision [$Id: ivyRwt.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] ***********************************************************************/ #include "ivy.h" #include "bool/deco/deco.h" #include "opt/rwt/rwt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums ); static int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost ); static Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth ); static int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax ); static void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Performs incremental rewriting of the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_ManRewritePre( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost, int fVerbose ) { Rwt_Man_t * pManRwt; Ivy_Obj_t * pNode; int i, nNodes, nGain; abctime clk, clkStart = Abc_Clock(); // start the rewriting manager pManRwt = Rwt_ManStart( 0 ); p->pData = pManRwt; if ( pManRwt == NULL ) return 0; // create fanouts if ( fUpdateLevel && p->fFanout == 0 ) Ivy_ManStartFanout( p ); // compute the reverse levels if level update is requested if ( fUpdateLevel ) Ivy_ManRequiredLevels( p ); // set the number of levels // p->nLevelMax = Ivy_ManLevels( p ); // resynthesize each node once nNodes = Ivy_ManObjIdMax(p); Ivy_ManForEachNode( p, pNode, i ) { // fix the fanin buffer problem Ivy_NodeFixBufferFanins( p, pNode, 1 ); if ( Ivy_ObjIsBuf(pNode) ) continue; // stop if all nodes have been tried once if ( i > nNodes ) break; // for each cut, try to resynthesize it nGain = Ivy_NodeRewrite( p, pManRwt, pNode, fUpdateLevel, fUseZeroCost ); if ( nGain > 0 || (nGain == 0 && fUseZeroCost) ) { Dec_Graph_t * pGraph = (Dec_Graph_t *)Rwt_ManReadDecs(pManRwt); int fCompl = Rwt_ManReadCompl(pManRwt); /* { Ivy_Obj_t * pObj; int i; printf( "USING: (" ); Vec_PtrForEachEntry( Ivy_Obj_t *, Rwt_ManReadLeaves(pManRwt), pObj, i ) printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pObj)) ); printf( ") Gain = %d.\n", nGain ); } if ( nGain > 0 ) { // print stats on the MFFC extern void Ivy_NodeMffcConeSuppPrint( Ivy_Obj_t * pNode ); printf( "Node %6d : Gain = %4d ", pNode->Id, nGain ); Ivy_NodeMffcConeSuppPrint( pNode ); } */ // complement the FF if needed clk = Abc_Clock(); if ( fCompl ) Dec_GraphComplement( pGraph ); Ivy_GraphUpdateNetwork( p, pNode, pGraph, fUpdateLevel, nGain ); if ( fCompl ) Dec_GraphComplement( pGraph ); Rwt_ManAddTimeUpdate( pManRwt, Abc_Clock() - clk ); } } Rwt_ManAddTimeTotal( pManRwt, Abc_Clock() - clkStart ); // print stats if ( fVerbose ) Rwt_ManPrintStats( pManRwt ); // delete the managers Rwt_ManStop( pManRwt ); p->pData = NULL; // fix the levels if ( fUpdateLevel ) Vec_IntFree( p->vRequired ), p->vRequired = NULL; else Ivy_ManResetLevels( p ); // check if ( (i = Ivy_ManCleanup(p)) ) printf( "Cleanup after rewriting removed %d dangling nodes.\n", i ); if ( !Ivy_ManCheck(p) ) printf( "Ivy_ManRewritePre(): The check has failed.\n" ); return 1; } /**Function************************************************************* Synopsis [Performs rewriting for one node.] Description [This procedure considers all the cuts computed for the node and tries to rewrite each of them using the "forest" of different AIG structures precomputed and stored in the RWR manager. Determines the best rewriting and computes the gain in the number of AIG nodes in the final network. In the end, p->vFanins contains information about the best cut that can be used for rewriting, while p->pGraph gives the decomposition dag (represented using decomposition graph data structure). Returns gain in the number of nodes or -1 if node cannot be rewritten.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost ) { int fVeryVerbose = 0; Dec_Graph_t * pGraph; Ivy_Store_t * pStore; Ivy_Cut_t * pCut; Ivy_Obj_t * pFanin; unsigned uPhase; unsigned uTruthBest = 0; // Suppress "might be used uninitialized" unsigned uTruth; char * pPerm; int Required, nNodesSaved; int nNodesSaveCur = -1; // Suppress "might be used uninitialized" int i, c, GainCur, GainBest = -1; abctime clk, clk2; p->nNodesConsidered++; // get the required times Required = fUpdateLevel? Vec_IntEntry( pMan->vRequired, pNode->Id ) : 1000000; // get the node's cuts clk = Abc_Clock(); pStore = Ivy_NodeFindCutsAll( pMan, pNode, 5 ); p->timeCut += Abc_Clock() - clk; // go through the cuts clk = Abc_Clock(); for ( c = 1; c < pStore->nCuts; c++ ) { pCut = pStore->pCuts + c; // consider only 4-input cuts if ( pCut->nSize != 4 ) continue; // skip the cuts with buffers for ( i = 0; i < (int)pCut->nSize; i++ ) if ( Ivy_ObjIsBuf( Ivy_ManObj(pMan, pCut->pArray[i]) ) ) break; if ( i != pCut->nSize ) { p->nCutsBad++; continue; } p->nCutsGood++; // get the fanin permutation clk2 = Abc_Clock(); uTruth = 0xFFFF & Ivy_NodeGetTruth( pNode, pCut->pArray, pCut->nSize ); // truth table p->timeTruth += Abc_Clock() - clk2; pPerm = p->pPerms4[ (int) p->pPerms[uTruth] ]; uPhase = p->pPhases[uTruth]; // collect fanins with the corresponding permutation/phase Vec_PtrClear( p->vFaninsCur ); Vec_PtrFill( p->vFaninsCur, (int)pCut->nSize, 0 ); for ( i = 0; i < (int)pCut->nSize; i++ ) { pFanin = Ivy_ManObj( pMan, pCut->pArray[(int)pPerm[i]] ); assert( Ivy_ObjIsNode(pFanin) || Ivy_ObjIsCi(pFanin) ); pFanin = Ivy_NotCond(pFanin, ((uPhase & (1< 0) ); Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin ); } clk2 = Abc_Clock(); /* printf( "Considering: (" ); Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i ) printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pFanin)) ); printf( ")\n" ); */ // mark the fanin boundary Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i ) Ivy_ObjRefsInc( Ivy_Regular(pFanin) ); // label MFFC with current ID Ivy_ManIncrementTravId( pMan ); nNodesSaved = Ivy_ObjMffcLabel( pMan, pNode ); // unmark the fanin boundary Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i ) Ivy_ObjRefsDec( Ivy_Regular(pFanin) ); p->timeMffc += Abc_Clock() - clk2; // evaluate the cut clk2 = Abc_Clock(); pGraph = Rwt_CutEvaluate( pMan, p, pNode, p->vFaninsCur, nNodesSaved, Required, &GainCur, uTruth ); p->timeEval += Abc_Clock() - clk2; // check if the cut is better than the current best one if ( pGraph != NULL && GainBest < GainCur ) { // save this form nNodesSaveCur = nNodesSaved; GainBest = GainCur; p->pGraph = pGraph; p->fCompl = ((uPhase & (1<<4)) > 0); uTruthBest = uTruth; // collect fanins in the Vec_PtrClear( p->vFanins ); Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFaninsCur, pFanin, i ) Vec_PtrPush( p->vFanins, pFanin ); } } p->timeRes += Abc_Clock() - clk; if ( GainBest == -1 ) return -1; // printf( "%d", nNodesSaveCur - GainBest ); /* if ( GainBest > 0 ) { if ( Rwt_CutIsintean( pNode, p->vFanins ) ) printf( "b" ); else { printf( "Node %d : ", pNode->Id ); Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFanins, pFanin, i ) printf( "%d ", Ivy_Regular(pFanin)->Id ); printf( "a" ); } } */ /* if ( GainBest > 0 ) if ( p->fCompl ) printf( "c" ); else printf( "." ); */ // copy the leaves Vec_PtrForEachEntry( Ivy_Obj_t *, p->vFanins, pFanin, i ) Dec_GraphNode((Dec_Graph_t *)p->pGraph, i)->pFunc = pFanin; p->nScores[p->pMap[uTruthBest]]++; p->nNodesGained += GainBest; if ( fUseZeroCost || GainBest > 0 ) p->nNodesRewritten++; // report the progress if ( fVeryVerbose && GainBest > 0 ) { printf( "Node %6d : ", Ivy_ObjId(pNode) ); printf( "Fanins = %d. ", p->vFanins->nSize ); printf( "Save = %d. ", nNodesSaveCur ); printf( "Add = %d. ", nNodesSaveCur-GainBest ); printf( "GAIN = %d. ", GainBest ); printf( "Cone = %d. ", p->pGraph? Dec_GraphNodeNum((Dec_Graph_t *)p->pGraph) : 0 ); printf( "Class = %d. ", p->pMap[uTruthBest] ); printf( "\n" ); } return GainBest; } /**Function************************************************************* Synopsis [Computes the truth table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Ivy_NodeGetTruth_rec( Ivy_Obj_t * pObj, int * pNums, int nNums ) { static unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; unsigned uTruth0, uTruth1; int i; for ( i = 0; i < nNums; i++ ) if ( pObj->Id == pNums[i] ) return uMasks[i]; assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); uTruth0 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin0(pObj), pNums, nNums ); if ( Ivy_ObjFaninC0(pObj) ) uTruth0 = ~uTruth0; if ( Ivy_ObjIsBuf(pObj) ) return uTruth0; uTruth1 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin1(pObj), pNums, nNums ); if ( Ivy_ObjFaninC1(pObj) ) uTruth1 = ~uTruth1; return uTruth0 & uTruth1; } /**Function************************************************************* Synopsis [Computes the truth table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums ) { assert( nNums < 6 ); return Ivy_NodeGetTruth_rec( pObj, pNums, nNums ); } /**Function************************************************************* Synopsis [Evaluates the cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth ) { Vec_Ptr_t * vSubgraphs; Dec_Graph_t * pGraphBest = NULL; // Suppress "might be used uninitialized" Dec_Graph_t * pGraphCur; Rwt_Node_t * pNode, * pFanin; int nNodesAdded, GainBest, i, k; // find the matching class of subgraphs vSubgraphs = Vec_VecEntry( p->vClasses, p->pMap[uTruth] ); p->nSubgraphs += vSubgraphs->nSize; // determine the best subgraph GainBest = -1; Vec_PtrForEachEntry( Rwt_Node_t *, vSubgraphs, pNode, i ) { // get the current graph pGraphCur = (Dec_Graph_t *)pNode->pNext; // copy the leaves Vec_PtrForEachEntry( Rwt_Node_t *, vFaninsCur, pFanin, k ) Dec_GraphNode(pGraphCur, k)->pFunc = pFanin; // detect how many unlabeled nodes will be reused nNodesAdded = Ivy_GraphToNetworkCount( pMan, pRoot, pGraphCur, nNodesSaved, LevelMax ); if ( nNodesAdded == -1 ) continue; assert( nNodesSaved >= nNodesAdded ); // count the gain at this node if ( GainBest < nNodesSaved - nNodesAdded ) { GainBest = nNodesSaved - nNodesAdded; pGraphBest = pGraphCur; } } if ( GainBest == -1 ) return NULL; *pGainBest = GainBest; return pGraphBest; } /**Function************************************************************* Synopsis [Counts the number of new nodes added when using this graph.] Description [AIG nodes for the fanins should be assigned to pNode->pFunc of the leaves of the graph before calling this procedure. Returns -1 if the number of nodes and levels exceeded the given limit or the number of levels exceeded the maximum allowed level.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax ) { Dec_Node_t * pNode, * pNode0, * pNode1; Ivy_Obj_t * pAnd, * pAnd0, * pAnd1; int i, Counter, LevelNew, LevelOld; // check for constant function or a literal if ( Dec_GraphIsConst(pGraph) || Dec_GraphIsVar(pGraph) ) return 0; // set the levels of the leaves Dec_GraphForEachLeaf( pGraph, pNode, i ) pNode->Level = Ivy_Regular((Ivy_Obj_t *)pNode->pFunc)->Level; // compute the AIG size after adding the internal nodes Counter = 0; Dec_GraphForEachNode( pGraph, pNode, i ) { // get the children of this node pNode0 = Dec_GraphNode( pGraph, pNode->eEdge0.Node ); pNode1 = Dec_GraphNode( pGraph, pNode->eEdge1.Node ); // get the AIG nodes corresponding to the children pAnd0 = (Ivy_Obj_t *)pNode0->pFunc; pAnd1 = (Ivy_Obj_t *)pNode1->pFunc; if ( pAnd0 && pAnd1 ) { // if they are both present, find the resulting node pAnd0 = Ivy_NotCond( pAnd0, pNode->eEdge0.fCompl ); pAnd1 = Ivy_NotCond( pAnd1, pNode->eEdge1.fCompl ); pAnd = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pAnd0, pAnd1, IVY_AND, IVY_INIT_NONE) ); // return -1 if the node is the same as the original root if ( Ivy_Regular(pAnd) == pRoot ) return -1; } else pAnd = NULL; // count the number of added nodes if ( pAnd == NULL || Ivy_ObjIsTravIdCurrent(p, Ivy_Regular(pAnd)) ) { if ( ++Counter > NodeMax ) return -1; } // count the number of new levels LevelNew = 1 + RWT_MAX( pNode0->Level, pNode1->Level ); if ( pAnd ) { if ( Ivy_Regular(pAnd) == p->pConst1 ) LevelNew = 0; else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd0) ) LevelNew = (int)Ivy_Regular(pAnd0)->Level; else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd1) ) LevelNew = (int)Ivy_Regular(pAnd1)->Level; LevelOld = (int)Ivy_Regular(pAnd)->Level; // assert( LevelNew == LevelOld ); } if ( LevelNew > LevelMax ) return -1; pNode->pFunc = pAnd; pNode->Level = LevelNew; } return Counter; } /**Function************************************************************* Synopsis [Transforms the decomposition graph into the AIG.] Description [AIG nodes for the fanins should be assigned to pNode->pFunc of the leaves of the graph before calling this procedure.] SideEffects [] SeeAlso [] ***********************************************************************/ Ivy_Obj_t * Ivy_GraphToNetwork( Ivy_Man_t * p, Dec_Graph_t * pGraph ) { Ivy_Obj_t * pAnd0, * pAnd1; Dec_Node_t * pNode = NULL; // Suppress "might be used uninitialized" int i; // check for constant function if ( Dec_GraphIsConst(pGraph) ) return Ivy_NotCond( Ivy_ManConst1(p), Dec_GraphIsComplement(pGraph) ); // check for a literal if ( Dec_GraphIsVar(pGraph) ) return Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphVar(pGraph)->pFunc, Dec_GraphIsComplement(pGraph) ); // build the AIG nodes corresponding to the AND gates of the graph Dec_GraphForEachNode( pGraph, pNode, i ) { pAnd0 = Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); pAnd1 = Ivy_NotCond( (Ivy_Obj_t *)Dec_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); pNode->pFunc = Ivy_And( p, pAnd0, pAnd1 ); } // complement the result if necessary return Ivy_NotCond( (Ivy_Obj_t *)pNode->pFunc, Dec_GraphIsComplement(pGraph) ); } /**Function************************************************************* Synopsis [Replaces MFFC of the node by the new factored form.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ) { Ivy_Obj_t * pRootNew; int nNodesNew, nNodesOld, Required; Required = fUpdateLevel? Vec_IntEntry( p->vRequired, pRoot->Id ) : 1000000; nNodesOld = Ivy_ManNodeNum(p); // create the new structure of nodes pRootNew = Ivy_GraphToNetwork( p, pGraph ); assert( (int)Ivy_Regular(pRootNew)->Level <= Required ); // if ( Ivy_Regular(pRootNew)->Level == Required ) // printf( "Difference %d.\n", Ivy_Regular(pRootNew)->Level - Required ); // remove the old nodes // Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel ); /* if ( Ivy_IsComplement(pRootNew) ) printf( "c" ); else printf( "d" ); if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 ) printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) ); printf( " " ); */ Ivy_ObjReplace( p, pRoot, pRootNew, 1, 0, 1 ); // compare the gains nNodesNew = Ivy_ManNodeNum(p); assert( nGain <= nNodesOld - nNodesNew ); // propagate the buffer Ivy_ManPropagateBuffers( p, 1 ); } /**Function************************************************************* Synopsis [Replaces MFFC of the node by the new factored form.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ivy_GraphUpdateNetwork3( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ) { Ivy_Obj_t * pRootNew, * pFanin; int nNodesNew, nNodesOld, i, nRefsOld; nNodesOld = Ivy_ManNodeNum(p); //printf( "Before = %d. ", Ivy_ManNodeNum(p) ); // mark the cut Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) Ivy_ObjRefsInc( Ivy_Regular(pFanin) ); // deref the old cone nRefsOld = pRoot->nRefs; pRoot->nRefs = 0; Ivy_ObjDelete_rec( p, pRoot, 0 ); pRoot->nRefs = nRefsOld; // unmark the cut Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) Ivy_ObjRefsDec( Ivy_Regular(pFanin) ); //printf( "Deref = %d. ", Ivy_ManNodeNum(p) ); // create the new structure of nodes pRootNew = Ivy_GraphToNetwork( p, pGraph ); //printf( "Create = %d. ", Ivy_ManNodeNum(p) ); // remove the old nodes // Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel ); /* if ( Ivy_IsComplement(pRootNew) ) printf( "c" ); else printf( "d" ); if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 ) printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) ); printf( " " ); */ Ivy_ObjReplace( p, pRoot, pRootNew, 0, 0, 1 ); //printf( "Replace = %d. ", Ivy_ManNodeNum(p) ); // delete remaining dangling nodes Vec_PtrForEachEntry( Ivy_Obj_t *, ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) { pFanin = Ivy_Regular(pFanin); if ( !Ivy_ObjIsNone(pFanin) && Ivy_ObjRefs(pFanin) == 0 ) Ivy_ObjDelete_rec( p, pFanin, 1 ); } //printf( "Deref = %d. ", Ivy_ManNodeNum(p) ); //printf( "\n" ); // compare the gains nNodesNew = Ivy_ManNodeNum(p); assert( nGain <= nNodesOld - nNodesNew ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END