/**CFile**************************************************************** FileName [fraigCanon.c] PackageName [FRAIG: Functionally reduced AND-INV graphs.] Synopsis [AND-node creation and elementary AND-operation.] Author [Alan Mishchenko ] Affiliation [UC Berkeley] Date [Ver. 2.0. Started - October 1, 2004] Revision [$Id: fraigCanon.c,v 1.4 2005/07/08 01:01:31 alanmi Exp $] ***********************************************************************/ #include #include "fraigInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [The internal AND operation for the two FRAIG nodes.] Description [This procedure is the core of the FRAIG package, because it performs the two-step canonicization of FRAIG nodes. The first step involves the lookup in the structural hash table (which hashes two ANDs into a node that has them as fanins, if such a node exists). If the node is not found in the structural hash table, an attempt is made to find a functionally equivalent node in another hash table (which hashes the simulation info into the nodes, which has this simulation info). Some tricks used on the way are described in the comments to the code and in the paper "FRAIGs: Functionally reduced AND-INV graphs".] SideEffects [] SeeAlso [] ***********************************************************************/ Fraig_Node_t * Fraig_NodeAndCanon( Fraig_Man_t * pMan, Fraig_Node_t * p1, Fraig_Node_t * p2 ) { Fraig_Node_t * pNodeNew, * pNodeOld, * pNodeRepr; int fUseSatCheck; // int RetValue; // check for trivial cases if ( p1 == p2 ) return p1; if ( p1 == Fraig_Not(p2) ) return Fraig_Not(pMan->pConst1); if ( Fraig_NodeIsConst(p1) ) { if ( p1 == pMan->pConst1 ) return p2; return Fraig_Not(pMan->pConst1); } if ( Fraig_NodeIsConst(p2) ) { if ( p2 == pMan->pConst1 ) return p1; return Fraig_Not(pMan->pConst1); } /* // check for less trivial cases if ( Fraig_IsComplement(p1) ) { if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p1), p2 ) ) { if ( RetValue == -1 ) pMan->nImplies0++; else pMan->nImplies1++; if ( RetValue == -1 ) return p2; } } else { if ( RetValue = Fraig_NodeIsInSupergate( p1, p2 ) ) { if ( RetValue == 1 ) pMan->nSimplifies1++; else pMan->nSimplifies0++; if ( RetValue == 1 ) return p1; return Fraig_Not(pMan->pConst1); } } if ( Fraig_IsComplement(p2) ) { if ( RetValue = Fraig_NodeIsInSupergate( Fraig_Regular(p2), p1 ) ) { if ( RetValue == -1 ) pMan->nImplies0++; else pMan->nImplies1++; if ( RetValue == -1 ) return p1; } } else { if ( RetValue = Fraig_NodeIsInSupergate( p2, p1 ) ) { if ( RetValue == 1 ) pMan->nSimplifies1++; else pMan->nSimplifies0++; if ( RetValue == 1 ) return p2; return Fraig_Not(pMan->pConst1); } } */ // perform level-one structural hashing if ( Fraig_HashTableLookupS( pMan, p1, p2, &pNodeNew ) ) // the node with these children is found { // if the existent node is part of the cone of unused logic // (that is logic feeding the node which is equivalent to the given node) // return the canonical representative of this node // determine the phase of the given node, with respect to its canonical form pNodeRepr = Fraig_Regular(pNodeNew)->pRepr; if ( pMan->fFuncRed && pNodeRepr ) return Fraig_NotCond( pNodeRepr, Fraig_IsComplement(pNodeNew) ^ Fraig_NodeComparePhase(Fraig_Regular(pNodeNew), pNodeRepr) ); // otherwise, the node is itself a canonical representative, return it return pNodeNew; } // the same node is not found, but the new one is created // if one level hashing is requested (without functionality hashing), return if ( !pMan->fFuncRed ) return pNodeNew; // check if the new node is unique using the simulation info if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 ) { pMan->nSatZeros++; if ( !pMan->fDoSparse ) // if we do not do sparse functions, skip return pNodeNew; // check the sparse function simulation hash table pNodeOld = Fraig_HashTableLookupF0( pMan, pNodeNew ); if ( pNodeOld == NULL ) // the node is unique (it is added to the table) return pNodeNew; } else { // check the simulation hash table pNodeOld = Fraig_HashTableLookupF( pMan, pNodeNew ); if ( pNodeOld == NULL ) // the node is unique return pNodeNew; } assert( pNodeOld->pRepr == 0 ); // there is another node which looks the same according to simulation // use SAT to resolve the ambiguity fUseSatCheck = (pMan->nInspLimit == 0 || Fraig_ManReadInspects(pMan) < pMan->nInspLimit); if ( fUseSatCheck && Fraig_NodeIsEquivalent( pMan, pNodeOld, pNodeNew, pMan->nBTLimit, 1000000 ) ) { // set the node to be equivalent with this node // to prevent loops, only set if the old node is not in the TFI of the new node // the loop may happen in the following case: suppose // NodeC = AND(NodeA, NodeB) and at the same time NodeA => NodeB // in this case, NodeA and NodeC are functionally equivalent // however, NodeA is a fanin of node NodeC (this leads to the loop) // add the node to the list of equivalent nodes or dereference it if ( pMan->fChoicing && !Fraig_CheckTfi( pMan, pNodeOld, pNodeNew ) ) { // if the old node is not in the TFI of the new node and choicing // is enabled, add the new node to the list of equivalent ones pNodeNew->pNextE = pNodeOld->pNextE; pNodeOld->pNextE = pNodeNew; } // set the canonical representative of this node pNodeNew->pRepr = pNodeOld; // return the equivalent node return Fraig_NotCond( pNodeOld, Fraig_NodeComparePhase(pNodeOld, pNodeNew) ); } // now we add another member to this simulation class if ( pNodeNew->nOnes == 0 || pNodeNew->nOnes == (unsigned)pMan->nWordsRand * 32 ) { Fraig_Node_t * pNodeTemp; assert( pMan->fDoSparse ); pNodeTemp = Fraig_HashTableLookupF0( pMan, pNodeNew ); // assert( pNodeTemp == NULL ); // Fraig_HashTableInsertF0( pMan, pNodeNew ); } else { pNodeNew->pNextD = pNodeOld->pNextD; pNodeOld->pNextD = pNodeNew; } // return the new node assert( pNodeNew->pRepr == 0 ); return pNodeNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END