/**CFile**************************************************************** FileName [fraInd.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [New FRAIG package.] Synopsis [Inductive prover.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 30, 2007.] Revision [$Id: fraInd.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $] ***********************************************************************/ #include "fra.h" #include "sat/cnf/cnf.h" #include "opt/dar/dar.h" #include "aig/saig/saig.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Performs AIG rewriting on the constraint manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fra_FraigInductionRewrite( Fra_Man_t * p ) { Aig_Man_t * pTemp; Aig_Obj_t * pObj, * pObjPo; int nTruePis, k, i; abctime clk = Abc_Clock(); // perform AIG rewriting on the speculated frames // pTemp = Dar_ManRwsat( pTemp, 1, 0 ); pTemp = Dar_ManRewriteDefault( p->pManFraig ); // printf( "Before = %6d. After = %6d.\n", Aig_ManNodeNum(p->pManFraig), Aig_ManNodeNum(pTemp) ); //Aig_ManDumpBlif( p->pManFraig, "1.blif", NULL, NULL ); //Aig_ManDumpBlif( pTemp, "2.blif", NULL, NULL ); // Fra_FramesWriteCone( pTemp ); // Aig_ManStop( pTemp ); // transfer PI/register pointers assert( p->pManFraig->nRegs == pTemp->nRegs ); assert( p->pManFraig->nAsserts == pTemp->nAsserts ); nTruePis = Aig_ManCiNum(p->pManAig) - Aig_ManRegNum(p->pManAig); memset( p->pMemFraig, 0, sizeof(Aig_Obj_t *) * p->nSizeAlloc * p->nFramesAll ); Fra_ObjSetFraig( Aig_ManConst1(p->pManAig), p->pPars->nFramesK, Aig_ManConst1(pTemp) ); Aig_ManForEachPiSeq( p->pManAig, pObj, i ) Fra_ObjSetFraig( pObj, p->pPars->nFramesK, Aig_ManCi(pTemp,nTruePis*p->pPars->nFramesK+i) ); k = 0; assert( Aig_ManRegNum(p->pManAig) == Aig_ManCoNum(pTemp) - pTemp->nAsserts ); Aig_ManForEachLoSeq( p->pManAig, pObj, i ) { pObjPo = Aig_ManCo(pTemp, pTemp->nAsserts + k++); Fra_ObjSetFraig( pObj, p->pPars->nFramesK, Aig_ObjChild0(pObjPo) ); } // exchange Aig_ManStop( p->pManFraig ); p->pManFraig = pTemp; p->timeRwr += Abc_Clock() - clk; } /**Function************************************************************* Synopsis [Performs speculative reduction for one node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Fra_FramesConstrainNode( Aig_Man_t * pManFraig, Aig_Obj_t * pObj, int iFrame ) { Aig_Obj_t * pObjNew, * pObjNew2, * pObjRepr, * pObjReprNew, * pMiter; // skip nodes without representative if ( (pObjRepr = Fra_ClassObjRepr(pObj)) == NULL ) return; assert( pObjRepr->Id < pObj->Id ); // get the new node pObjNew = Fra_ObjFraig( pObj, iFrame ); // get the new node of the representative pObjReprNew = Fra_ObjFraig( pObjRepr, iFrame ); // if this is the same node, no need to add constraints if ( Aig_Regular(pObjNew) == Aig_Regular(pObjReprNew) ) return; // these are different nodes - perform speculative reduction pObjNew2 = Aig_NotCond( pObjReprNew, pObj->fPhase ^ pObjRepr->fPhase ); // set the new node Fra_ObjSetFraig( pObj, iFrame, pObjNew2 ); // add the constraint pMiter = Aig_Exor( pManFraig, pObjNew, pObjReprNew ); pMiter = Aig_NotCond( pMiter, !Aig_ObjPhaseReal(pMiter) ); assert( Aig_ObjPhaseReal(pMiter) == 1 ); Aig_ObjCreateCo( pManFraig, pMiter ); } /**Function************************************************************* Synopsis [Prepares the inductive case with speculative reduction.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Man_t * Fra_FramesWithClasses( Fra_Man_t * p ) { Aig_Man_t * pManFraig; Aig_Obj_t * pObj, * pObjLi, * pObjLo, * pObjNew; int i, k, f; assert( p->pManFraig == NULL ); assert( Aig_ManRegNum(p->pManAig) > 0 ); assert( Aig_ManRegNum(p->pManAig) < Aig_ManCiNum(p->pManAig) ); // start the fraig package pManFraig = Aig_ManStart( Aig_ManObjNumMax(p->pManAig) * p->nFramesAll ); pManFraig->pName = Abc_UtilStrsav( p->pManAig->pName ); pManFraig->pSpec = Abc_UtilStrsav( p->pManAig->pSpec ); pManFraig->nRegs = p->pManAig->nRegs; // create PI nodes for the frames for ( f = 0; f < p->nFramesAll; f++ ) Fra_ObjSetFraig( Aig_ManConst1(p->pManAig), f, Aig_ManConst1(pManFraig) ); for ( f = 0; f < p->nFramesAll; f++ ) Aig_ManForEachPiSeq( p->pManAig, pObj, i ) Fra_ObjSetFraig( pObj, f, Aig_ObjCreateCi(pManFraig) ); // create latches for the first frame Aig_ManForEachLoSeq( p->pManAig, pObj, i ) Fra_ObjSetFraig( pObj, 0, Aig_ObjCreateCi(pManFraig) ); // add timeframes // pManFraig->fAddStrash = 1; for ( f = 0; f < p->nFramesAll - 1; f++ ) { // set the constraints on the latch outputs Aig_ManForEachLoSeq( p->pManAig, pObj, i ) Fra_FramesConstrainNode( pManFraig, pObj, f ); // add internal nodes of this frame Aig_ManForEachNode( p->pManAig, pObj, i ) { pObjNew = Aig_And( pManFraig, Fra_ObjChild0Fra(pObj,f), Fra_ObjChild1Fra(pObj,f) ); Fra_ObjSetFraig( pObj, f, pObjNew ); Fra_FramesConstrainNode( pManFraig, pObj, f ); } // transfer latch input to the latch outputs Aig_ManForEachLiLoSeq( p->pManAig, pObjLi, pObjLo, k ) Fra_ObjSetFraig( pObjLo, f+1, Fra_ObjChild0Fra(pObjLi,f) ); } // pManFraig->fAddStrash = 0; // mark the asserts pManFraig->nAsserts = Aig_ManCoNum(pManFraig); // add the POs for the latch outputs of the last frame Aig_ManForEachLoSeq( p->pManAig, pObj, i ) Aig_ObjCreateCo( pManFraig, Fra_ObjFraig(pObj,p->nFramesAll-1) ); // remove dangling nodes Aig_ManCleanup( pManFraig ); // make sure the satisfying assignment is node assigned assert( pManFraig->pData == NULL ); return pManFraig; } /**Function************************************************************* Synopsis [Prepares the inductive case with speculative reduction.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fra_FramesAddMore( Aig_Man_t * p, int nFrames ) { Aig_Obj_t * pObj, ** pLatches; int i, k, f, nNodesOld; // set copy pointer of each object to point to itself Aig_ManForEachObj( p, pObj, i ) pObj->pData = pObj; // iterate and add objects nNodesOld = Aig_ManObjNumMax(p); pLatches = ABC_ALLOC( Aig_Obj_t *, Aig_ManRegNum(p) ); for ( f = 0; f < nFrames; f++ ) { // clean latch inputs and outputs Aig_ManForEachLiSeq( p, pObj, i ) pObj->pData = NULL; Aig_ManForEachLoSeq( p, pObj, i ) pObj->pData = NULL; // save the latch input values k = 0; Aig_ManForEachLiSeq( p, pObj, i ) { if ( Aig_ObjFanin0(pObj)->pData ) pLatches[k++] = Aig_ObjChild0Copy(pObj); else pLatches[k++] = NULL; } // insert them as the latch output values k = 0; Aig_ManForEachLoSeq( p, pObj, i ) pObj->pData = pLatches[k++]; // create the next time frame of nodes Aig_ManForEachNode( p, pObj, i ) { if ( i > nNodesOld ) break; if ( Aig_ObjFanin0(pObj)->pData && Aig_ObjFanin1(pObj)->pData ) pObj->pData = Aig_And( p, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) ); else pObj->pData = NULL; } } ABC_FREE( pLatches ); } /**Function************************************************************* Synopsis [Performs partitioned sequential SAT sweepingG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Man_t * Fra_FraigInductionPart( Aig_Man_t * pAig, Fra_Ssw_t * pPars ) { int fPrintParts = 0; char Buffer[100]; Aig_Man_t * pTemp, * pNew; Vec_Ptr_t * vResult; Vec_Int_t * vPart; int * pMapBack; int i, nCountPis, nCountRegs; int nClasses, nPartSize, fVerbose; abctime clk = Abc_Clock(); // save parameters nPartSize = pPars->nPartSize; pPars->nPartSize = 0; fVerbose = pPars->fVerbose; pPars->fVerbose = 0; // generate partitions if ( pAig->vClockDoms ) { // divide large clock domains into separate partitions vResult = Vec_PtrAlloc( 100 ); Vec_PtrForEachEntry( Vec_Int_t *, (Vec_Ptr_t *)pAig->vClockDoms, vPart, i ) { if ( nPartSize && Vec_IntSize(vPart) > nPartSize ) Aig_ManPartDivide( vResult, vPart, nPartSize, pPars->nOverSize ); else Vec_PtrPush( vResult, Vec_IntDup(vPart) ); } } else vResult = Aig_ManRegPartitionSimple( pAig, nPartSize, pPars->nOverSize ); // vResult = Aig_ManPartitionSmartRegisters( pAig, nPartSize, 0 ); // vResult = Aig_ManRegPartitionSmart( pAig, nPartSize ); if ( fPrintParts ) { // print partitions printf( "Simple partitioning. %d partitions are saved:\n", Vec_PtrSize(vResult) ); Vec_PtrForEachEntry( Vec_Int_t *, vResult, vPart, i ) { sprintf( Buffer, "part%03d.aig", i ); pTemp = Aig_ManRegCreatePart( pAig, vPart, &nCountPis, &nCountRegs, NULL ); Ioa_WriteAiger( pTemp, Buffer, 0, 0 ); printf( "part%03d.aig : Reg = %4d. PI = %4d. (True = %4d. Regs = %4d.) And = %5d.\n", i, Vec_IntSize(vPart), Aig_ManCiNum(pTemp)-Vec_IntSize(vPart), nCountPis, nCountRegs, Aig_ManNodeNum(pTemp) ); Aig_ManStop( pTemp ); } } // perform SSW with partitions Aig_ManReprStart( pAig, Aig_ManObjNumMax(pAig) ); Vec_PtrForEachEntry( Vec_Int_t *, vResult, vPart, i ) { pTemp = Aig_ManRegCreatePart( pAig, vPart, &nCountPis, &nCountRegs, &pMapBack ); // create the projection of 1-hot registers if ( pAig->vOnehots ) pTemp->vOnehots = Aig_ManRegProjectOnehots( pAig, pTemp, pAig->vOnehots, fVerbose ); // run SSW pNew = Fra_FraigInduction( pTemp, pPars ); nClasses = Aig_TransferMappedClasses( pAig, pTemp, pMapBack ); if ( fVerbose ) printf( "%3d : Reg = %4d. PI = %4d. (True = %4d. Regs = %4d.) And = %5d. It = %3d. Cl = %5d.\n", i, Vec_IntSize(vPart), Aig_ManCiNum(pTemp)-Vec_IntSize(vPart), nCountPis, nCountRegs, Aig_ManNodeNum(pTemp), pPars->nIters, nClasses ); Aig_ManStop( pNew ); Aig_ManStop( pTemp ); ABC_FREE( pMapBack ); } // remap the AIG pNew = Aig_ManDupRepr( pAig, 0 ); Aig_ManSeqCleanup( pNew ); // Aig_ManPrintStats( pAig ); // Aig_ManPrintStats( pNew ); Vec_VecFree( (Vec_Vec_t *)vResult ); pPars->nPartSize = nPartSize; pPars->fVerbose = fVerbose; if ( fVerbose ) { ABC_PRT( "Total time", Abc_Clock() - clk ); } return pNew; } /**Function************************************************************* Synopsis [Performs sequential SAT sweeping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Man_t * Fra_FraigInduction( Aig_Man_t * pManAig, Fra_Ssw_t * pParams ) { int fUseSimpleCnf = 0; int fUseOldSimulation = 0; // other paramaters affecting performance // - presence of FRAIGing in Abc_NtkDarSeqSweep() // - using distance-1 patterns in Fra_SmlAssignDist1() // - the number of simulation patterns // - the number of BMC frames Fra_Man_t * p; Fra_Par_t Pars, * pPars = &Pars; Aig_Obj_t * pObj; Cnf_Dat_t * pCnf; Aig_Man_t * pManAigNew = NULL; int nNodesBeg, nRegsBeg; int nIter = -1; // Suppress "might be used uninitialized" int i; abctime clk = Abc_Clock(), clk2; abctime TimeToStop = pParams->TimeLimit ? pParams->TimeLimit * CLOCKS_PER_SEC + Abc_Clock() : 0; if ( Aig_ManNodeNum(pManAig) == 0 ) { pParams->nIters = 0; // Ntl_ManFinalize() needs the following to satisfy an assertion Aig_ManReprStart(pManAig,Aig_ManObjNumMax(pManAig)); return Aig_ManDupOrdered(pManAig); } assert( Aig_ManRegNum(pManAig) > 0 ); assert( pParams->nFramesK > 0 ); //Aig_ManShow( pManAig, 0, NULL ); if ( pParams->fWriteImps && pParams->nPartSize > 0 ) { pParams->nPartSize = 0; printf( "Partitioning was disabled to allow implication writing.\n" ); } // perform partitioning if ( (pParams->nPartSize > 0 && pParams->nPartSize < Aig_ManRegNum(pManAig)) || (pManAig->vClockDoms && Vec_VecSize(pManAig->vClockDoms) > 0) ) return Fra_FraigInductionPart( pManAig, pParams ); nNodesBeg = Aig_ManNodeNum(pManAig); nRegsBeg = Aig_ManRegNum(pManAig); // enhance the AIG by adding timeframes // Fra_FramesAddMore( pManAig, 3 ); // get parameters Fra_ParamsDefaultSeq( pPars ); pPars->nFramesP = pParams->nFramesP; pPars->nFramesK = pParams->nFramesK; pPars->nMaxImps = pParams->nMaxImps; pPars->nMaxLevs = pParams->nMaxLevs; pPars->fVerbose = pParams->fVerbose; pPars->fRewrite = pParams->fRewrite; pPars->fLatchCorr = pParams->fLatchCorr; pPars->fUseImps = pParams->fUseImps; pPars->fWriteImps = pParams->fWriteImps; pPars->fUse1Hot = pParams->fUse1Hot; assert( !(pPars->nFramesP > 0 && pPars->fUse1Hot) ); assert( !(pPars->nFramesK > 1 && pPars->fUse1Hot) ); // start the fraig manager for this run p = Fra_ManStart( pManAig, pPars ); p->pPars->nBTLimitNode = 0; // derive and refine e-classes using K initialized frames if ( fUseOldSimulation ) { if ( pPars->nFramesP > 0 ) { pPars->nFramesP = 0; printf( "Fra_FraigInduction(): Prefix cannot be used.\n" ); } p->pSml = Fra_SmlStart( pManAig, 0, pPars->nFramesK + 1, pPars->nSimWords ); Fra_SmlSimulate( p, 1 ); } else { // bug: r iscas/blif/s5378.blif ; st; ssw -v // bug: r iscas/blif/s1238.blif ; st; ssw -v // refine the classes with more simulation rounds if ( pPars->fVerbose ) printf( "Simulating %d AIG nodes for %d cycles ... ", Aig_ManNodeNum(pManAig), pPars->nFramesP + 32 ); p->pSml = Fra_SmlSimulateSeq( pManAig, pPars->nFramesP, 32, 1, 1 ); //pPars->nFramesK + 1, 1 ); if ( pPars->fVerbose ) { ABC_PRT( "Time", Abc_Clock() - clk ); } Fra_ClassesPrepare( p->pCla, p->pPars->fLatchCorr, p->pPars->nMaxLevs ); // Fra_ClassesPostprocess( p->pCla ); // compute one-hotness conditions if ( p->pPars->fUse1Hot ) p->vOneHots = Fra_OneHotCompute( p, p->pSml ); // allocate new simulation manager for simulating counter-examples Fra_SmlStop( p->pSml ); p->pSml = Fra_SmlStart( pManAig, 0, pPars->nFramesK + 1, pPars->nSimWords ); } // select the most expressive implications if ( pPars->fUseImps ) p->pCla->vImps = Fra_ImpDerive( p, 5000000, pPars->nMaxImps, pPars->fLatchCorr ); if ( pParams->TimeLimit != 0.0 && Abc_Clock() > TimeToStop ) { if ( !pParams->fSilent ) printf( "Fra_FraigInduction(): Runtime limit exceeded.\n" ); goto finish; } // perform BMC (for the min number of frames) Fra_BmcPerform( p, pPars->nFramesP, pPars->nFramesK+1 ); // +1 is needed to prevent non-refinement //Fra_ClassesPrint( p->pCla, 1 ); // if ( p->vCex == NULL ) // p->vCex = Vec_IntAlloc( 1000 ); p->nLitsBeg = Fra_ClassesCountLits( p->pCla ); p->nNodesBeg = nNodesBeg; // Aig_ManNodeNum(pManAig); p->nRegsBeg = nRegsBeg; // Aig_ManRegNum(pManAig); // dump AIG of the timeframes // pManAigNew = Fra_ClassesDeriveAig( p->pCla, pPars->nFramesK ); // Aig_ManDumpBlif( pManAigNew, "frame_aig.blif", NULL, NULL ); // Fra_ManPartitionTest2( pManAigNew ); // Aig_ManStop( pManAigNew ); // iterate the inductive case p->pCla->fRefinement = 1; for ( nIter = 0; p->pCla->fRefinement; nIter++ ) { int nLitsOld = Fra_ClassesCountLits(p->pCla); int nImpsOld = p->pCla->vImps? Vec_IntSize(p->pCla->vImps) : 0; int nHotsOld = p->vOneHots? Fra_OneHotCount(p, p->vOneHots) : 0; abctime clk3 = Abc_Clock(); if ( pParams->TimeLimit != 0.0 && Abc_Clock() > TimeToStop ) { if ( !pParams->fSilent ) printf( "Fra_FraigInduction(): Runtime limit exceeded.\n" ); goto finish; } // mark the classes as non-refined p->pCla->fRefinement = 0; // derive non-init K-timeframes while implementing e-classes clk2 = Abc_Clock(); p->pManFraig = Fra_FramesWithClasses( p ); p->timeTrav += Abc_Clock() - clk2; //Aig_ManDumpBlif( p->pManFraig, "testaig.blif", NULL, NULL ); // perform AIG rewriting if ( p->pPars->fRewrite ) Fra_FraigInductionRewrite( p ); // convert the manager to SAT solver (the last nLatches outputs are inputs) if ( fUseSimpleCnf || pPars->fUseImps ) pCnf = Cnf_DeriveSimple( p->pManFraig, Aig_ManRegNum(p->pManFraig) ); else pCnf = Cnf_Derive( p->pManFraig, Aig_ManRegNum(p->pManFraig) ); // Cnf_DataTranformPolarity( pCnf, 0 ); //Cnf_DataWriteIntoFile( pCnf, "temp.cnf", 1 ); p->pSat = (sat_solver *)Cnf_DataWriteIntoSolver( pCnf, 1, 0 ); p->nSatVars = pCnf->nVars; assert( p->pSat != NULL ); if ( p->pSat == NULL ) printf( "Fra_FraigInduction(): Computed CNF is not valid.\n" ); if ( pPars->fUseImps ) { Fra_ImpAddToSolver( p, p->pCla->vImps, pCnf->pVarNums ); if ( p->pSat == NULL ) printf( "Fra_FraigInduction(): Adding implicationsn to CNF led to a conflict.\n" ); } // set the pointers to the manager Aig_ManForEachObj( p->pManFraig, pObj, i ) pObj->pData = p; // prepare solver for fraiging the last timeframe Fra_ManClean( p, Aig_ManObjNumMax(p->pManFraig) + Aig_ManNodeNum(p->pManAig) ); // transfer PI/LO variable numbers Aig_ManForEachObj( p->pManFraig, pObj, i ) { if ( pCnf->pVarNums[pObj->Id] == -1 ) continue; Fra_ObjSetSatNum( pObj, pCnf->pVarNums[pObj->Id] ); Fra_ObjSetFaninVec( pObj, (Vec_Ptr_t *)1 ); } Cnf_DataFree( pCnf ); // add one-hotness clauses if ( p->pPars->fUse1Hot ) Fra_OneHotAssume( p, p->vOneHots ); // if ( p->pManAig->vOnehots ) // Fra_OneHotAddKnownConstraint( p, p->pManAig->vOnehots ); // report the intermediate results if ( pPars->fVerbose ) { printf( "%3d : C = %6d. Cl = %6d. L = %6d. LR = %6d. ", nIter, Vec_PtrSize(p->pCla->vClasses1), Vec_PtrSize(p->pCla->vClasses), Fra_ClassesCountLits(p->pCla), p->pManFraig->nAsserts ); if ( p->pCla->vImps ) printf( "I = %6d. ", Vec_IntSize(p->pCla->vImps) ); if ( p->pPars->fUse1Hot ) printf( "1h = %6d. ", Fra_OneHotCount(p, p->vOneHots) ); printf( "NR = %6d. ", Aig_ManNodeNum(p->pManFraig) ); // printf( "\n" ); } // perform sweeping p->nSatCallsRecent = 0; p->nSatCallsSkipped = 0; clk2 = Abc_Clock(); if ( p->pPars->fUse1Hot ) Fra_OneHotCheck( p, p->vOneHots ); Fra_FraigSweep( p ); if ( pPars->fVerbose ) { ABC_PRT( "T", Abc_Clock() - clk3 ); } // Sat_SolverPrintStats( stdout, p->pSat ); // remove FRAIG and SAT solver Aig_ManStop( p->pManFraig ); p->pManFraig = NULL; // printf( "Vars = %d. Clauses = %d. Learnts = %d.\n", p->pSat->size, p->pSat->clauses.size, p->pSat->learnts.size ); sat_solver_delete( p->pSat ); p->pSat = NULL; memset( p->pMemFraig, 0, sizeof(Aig_Obj_t *) * p->nSizeAlloc * p->nFramesAll ); // printf( "Recent SAT called = %d. Skipped = %d.\n", p->nSatCallsRecent, p->nSatCallsSkipped ); assert( p->vTimeouts == NULL ); if ( p->vTimeouts ) printf( "Fra_FraigInduction(): SAT solver timed out!\n" ); // check if refinement has happened // p->pCla->fRefinement = (int)(nLitsOld != Fra_ClassesCountLits(p->pCla)); if ( p->pCla->fRefinement && nLitsOld == Fra_ClassesCountLits(p->pCla) && nImpsOld == (p->pCla->vImps? Vec_IntSize(p->pCla->vImps) : 0) && nHotsOld == (p->vOneHots? Fra_OneHotCount(p, p->vOneHots) : 0) ) { printf( "Fra_FraigInduction(): Internal error. The result may not verify.\n" ); break; } } /* // verify implications using simulation if ( p->pCla->vImps && Vec_IntSize(p->pCla->vImps) ) { int Temp; abctime clk = Abc_Clock(); if ( Temp = Fra_ImpVerifyUsingSimulation( p ) ) printf( "Implications failing the simulation test = %d (out of %d). ", Temp, Vec_IntSize(p->pCla->vImps) ); else printf( "All %d implications have passed the simulation test. ", Vec_IntSize(p->pCla->vImps) ); ABC_PRT( "Time", Abc_Clock() - clk ); } */ // move the classes into representatives and reduce AIG clk2 = Abc_Clock(); if ( p->pPars->fWriteImps && p->vOneHots && Fra_OneHotCount(p, p->vOneHots) ) { extern void Ioa_WriteAiger( Aig_Man_t * pMan, char * pFileName, int fWriteSymbols, int fCompact ); Aig_Man_t * pNew; char * pFileName = Ioa_FileNameGenericAppend( p->pManAig->pName, "_care.aig" ); printf( "Care one-hotness clauses will be written into file \"%s\".\n", pFileName ); pManAigNew = Aig_ManDupOrdered( pManAig ); pNew = Fra_OneHotCreateExdc( p, p->vOneHots ); Ioa_WriteAiger( pNew, pFileName, 0, 1 ); Aig_ManStop( pNew ); } else { // Fra_ClassesPrint( p->pCla, 1 ); Fra_ClassesSelectRepr( p->pCla ); Fra_ClassesCopyReprs( p->pCla, p->vTimeouts ); pManAigNew = Aig_ManDupRepr( pManAig, 0 ); } // add implications to the manager // if ( fWriteImps && p->pCla->vImps && Vec_IntSize(p->pCla->vImps) ) // Fra_ImpRecordInManager( p, pManAigNew ); // cleanup the new manager Aig_ManSeqCleanup( pManAigNew ); // remove pointers to the dead nodes // Aig_ManForEachObj( pManAig, pObj, i ) // if ( pObj->pData && Aig_ObjIsNone(pObj->pData) ) // pObj->pData = NULL; // Aig_ManCountMergeRegs( pManAigNew ); p->timeTrav += Abc_Clock() - clk2; p->timeTotal = Abc_Clock() - clk; // get the final stats p->nLitsEnd = Fra_ClassesCountLits( p->pCla ); p->nNodesEnd = Aig_ManNodeNum(pManAigNew); p->nRegsEnd = Aig_ManRegNum(pManAigNew); // free the manager finish: Fra_ManStop( p ); // check the output // if ( Aig_ManCoNum(pManAigNew) - Aig_ManRegNum(pManAigNew) == 1 ) // if ( Aig_ObjChild0( Aig_ManCo(pManAigNew,0) ) == Aig_ManConst0(pManAigNew) ) // printf( "Proved output constant 0.\n" ); pParams->nIters = nIter; return pManAigNew; } /**Function************************************************************* Synopsis [Outputs a set of pairs of equivalent nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fra_FraigInductionTest( char * pFileName, Fra_Ssw_t * pParams ) { FILE * pFile; char * pFilePairs; Aig_Man_t * pMan, * pNew; Aig_Obj_t * pObj, * pRepr; int * pNum2Id; int i, Counter = 0; pMan = Saig_ManReadBlif( pFileName ); if ( pMan == NULL ) return 0; // perform seq SAT sweeping pNew = Fra_FraigInduction( pMan, pParams ); if ( pNew == NULL ) { Aig_ManStop( pMan ); return 0; } if ( pParams->fVerbose ) { printf( "Original AIG: " ); Aig_ManPrintStats( pMan ); printf( "Reduced AIG: " ); Aig_ManPrintStats( pNew ); } Aig_ManStop( pNew ); pNum2Id = (int *)pMan->pData; // write the output file pFilePairs = Aig_FileNameGenericAppend( pFileName, ".pairs" ); pFile = fopen( pFilePairs, "w" ); Aig_ManForEachObj( pMan, pObj, i ) if ( (pRepr = pMan->pReprs[pObj->Id]) ) { fprintf( pFile, "%d %d %c\n", pNum2Id[pObj->Id], pNum2Id[pRepr->Id], (Aig_ObjPhase(pObj) ^ Aig_ObjPhase(pRepr))? '-' : '+' ); Counter++; } fclose( pFile ); if ( pParams->fVerbose ) { printf( "Result: %d pairs of seq equiv nodes are written into file \"%s\".\n", Counter, pFilePairs ); } Aig_ManStop( pMan ); return 1; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END