/**CFile**************************************************************** FileName [sclBuffer.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Standard-cell library representation.] Synopsis [Buffering algorithms.] Author [Alan Mishchenko, Niklas Een] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - August 24, 2012.] Revision [$Id: sclBuffer.c,v 1.0 2012/08/24 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sclSize.h" #include "map/mio/mio.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define BUF_SCALE 1000 typedef struct Buf_Man_t_ Buf_Man_t; struct Buf_Man_t_ { // parameters int nFanMin; // the smallest fanout count to consider int nFanMax; // the largest fanout count allowed off CP int fBufPis; // enables buffing of the combinational inputs // internal deta Abc_Ntk_t * pNtk; // logic network Vec_Int_t * vOffsets; // offsets into edge delays Vec_Int_t * vEdges; // edge delays Vec_Int_t * vArr; // arrival times Vec_Int_t * vDep; // departure times Vec_Flt_t * vCounts; // fanout counts Vec_Que_t * vQue; // queue by fanout count int nObjStart; // the number of starting objects int nObjAlloc; // the number of allocated objects int DelayMax; // maximum delay (percentage of inverter delay) float DelayInv; // inverter delay // sorting fanouts Vec_Int_t * vOrder; // ordering of fanouts Vec_Int_t * vDelays; // fanout delays Vec_Int_t * vNonCrit; // non-critical fanouts Vec_Int_t * vTfCone; // TFI/TFO cone of the node including the node Vec_Ptr_t * vFanouts; // temp storage for fanouts // statistics int nSeparate; int nDuplicate; int nBranch0; int nBranch1; int nBranchCrit; }; static inline int Abc_BufNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vArr, Abc_ObjId(pObj) ); } static inline int Abc_BufNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj ) { return Vec_IntEntry( p->vDep, Abc_ObjId(pObj) ); } static inline void Abc_BufSetNodeArr( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vArr, Abc_ObjId(pObj), f ); } static inline void Abc_BufSetNodeDep( Buf_Man_t * p, Abc_Obj_t * pObj, int f ) { Vec_IntWriteEntry( p->vDep, Abc_ObjId(pObj), f ); } static inline int Abc_BufEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i ) { return Vec_IntEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i ); } static inline void Abc_BufSetEdgeDelay( Buf_Man_t * p, Abc_Obj_t * pObj, int i, int f ) { Vec_IntWriteEntry( p->vEdges, Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) + i, f ); } static inline int Abc_BufNodeSlack( Buf_Man_t * p, Abc_Obj_t * pObj ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pObj); } static inline int Abc_BufEdgeSlack( Buf_Man_t * p, Abc_Obj_t * pObj, Abc_Obj_t * pFan ) { return p->DelayMax - Abc_BufNodeArr(p, pObj) - Abc_BufNodeDep(p, pFan) - Abc_BufEdgeDelay(p, pFan, Abc_NodeFindFanin(pFan, pObj)); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Make sure fanins of gates are not duplicated.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_SclReportDupFanins( Abc_Ntk_t * pNtk ) { Abc_Obj_t * pObj, * pFanin, * pFanin2; int i, k, k2; Abc_NtkForEachNode( pNtk, pObj, i ) Abc_ObjForEachFanin( pObj, pFanin, k ) Abc_ObjForEachFanin( pObj, pFanin2, k2 ) if ( k != k2 && pFanin == pFanin2 ) printf( "Node %d has dup fanin %d.\n", i, Abc_ObjId(pFanin) ); } /**Function************************************************************* Synopsis [Removes buffers and inverters.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Abc_SclObjIsBufInv( Abc_Obj_t * pObj ) { return Abc_ObjIsNode(pObj) && Abc_ObjFaninNum(pObj) == 1; } int Abc_SclIsInv( Abc_Obj_t * pObj ) { assert( Abc_ObjIsNode(pObj) ); return Mio_GateReadTruth((Mio_Gate_t *)pObj->pData) == ABC_CONST(0x5555555555555555); } int Abc_SclGetRealFaninLit( Abc_Obj_t * pObj ) { int iLit; if ( !Abc_SclObjIsBufInv(pObj) ) return Abc_Var2Lit( Abc_ObjId(pObj), 0 ); iLit = Abc_SclGetRealFaninLit( Abc_ObjFanin0(pObj) ); return Abc_LitNotCond( iLit, Abc_SclIsInv(pObj) ); } Abc_Ntk_t * Abc_SclUnBufferPerform( Abc_Ntk_t * pNtk, int fVerbose ) { Vec_Int_t * vLits; Abc_Obj_t * pObj, * pFanin, * pFaninNew; int i, k, iLit, nNodesOld = Abc_NtkObjNumMax(pNtk); // assign inverters vLits = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNode( pNtk, pObj, i ) if ( Abc_SclIsInv(pObj) && !Abc_SclObjIsBufInv(Abc_ObjFanin0(pObj)) ) Vec_IntWriteEntry( vLits, Abc_ObjFaninId0(pObj), Abc_ObjId(pObj) ); // transfer fanins Abc_NtkForEachNodeCo( pNtk, pObj, i ) { if ( i >= nNodesOld ) break; Abc_ObjForEachFanin( pObj, pFanin, k ) { if ( !Abc_SclObjIsBufInv(pFanin) ) continue; iLit = Abc_SclGetRealFaninLit( pFanin ); pFaninNew = Abc_NtkObj( pNtk, Abc_Lit2Var(iLit) ); if ( Abc_LitIsCompl(iLit) ) { if ( Vec_IntEntry( vLits, Abc_Lit2Var(iLit) ) == -1 ) { pFaninNew = Abc_NtkCreateNodeInv( pNtk, pFaninNew ); Vec_IntWriteEntry( vLits, Abc_Lit2Var(iLit), Abc_ObjId(pFaninNew) ); } else pFaninNew = Abc_NtkObj( pNtk, Vec_IntEntry( vLits, Abc_Lit2Var(iLit) ) ); assert( Abc_ObjFaninNum(pFaninNew) == 1 ); } if ( pFanin != pFaninNew ) Abc_ObjPatchFanin( pObj, pFanin, pFaninNew ); } } Vec_IntFree( vLits ); // duplicate network in topo order return Abc_NtkDupDfs( pNtk ); } /**Function************************************************************* Synopsis [Removes buffers and inverters.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclCountMaxPhases( Abc_Ntk_t * pNtk ) { Vec_Int_t * vPhLevel; Abc_Obj_t * pObj, * pFanin; int i, k, Max = 0, MaxAll = 0; vPhLevel = Vec_IntStart( Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNodeCo( pNtk, pObj, i ) { Max = 0; Abc_ObjForEachFanin( pObj, pFanin, k ) Max = Abc_MaxInt( Max, Vec_IntEntry(vPhLevel, Abc_ObjId(pFanin)) + Abc_ObjFaninPhase(pObj, k) ); Vec_IntWriteEntry( vPhLevel, i, Max ); MaxAll = Abc_MaxInt( MaxAll, Max ); } Vec_IntFree( vPhLevel ); return MaxAll; } Abc_Ntk_t * Abc_SclBufferPhase( Abc_Ntk_t * pNtk, int fVerbose ) { Abc_Ntk_t * pNtkNew; Vec_Int_t * vInvs; Abc_Obj_t * pObj, * pFanin, * pFaninNew; int nNodesOld = Abc_NtkObjNumMax(pNtk); int i, k, Counter = 0, Counter2 = 0, Total = 0; assert( pNtk->vPhases != NULL ); vInvs = Vec_IntStart( Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNodeCo( pNtk, pObj, i ) { if ( i >= nNodesOld ) break; Abc_ObjForEachFanin( pObj, pFanin, k ) { Total++; if ( !Abc_ObjFaninPhase(pObj, k) ) continue; if ( Vec_IntEntry(vInvs, Abc_ObjId(pFanin)) == 0 || Abc_ObjIsCi(pFanin) ) // allow PIs to have high fanout - to be fixed later { pFaninNew = Abc_NtkCreateNodeInv( pNtk, pFanin ); Vec_IntWriteEntry( vInvs, Abc_ObjId(pFanin), Abc_ObjId(pFaninNew) ); Counter++; } pFaninNew = Abc_NtkObj( pNtk, Vec_IntEntry(vInvs, Abc_ObjId(pFanin)) ); Abc_ObjPatchFanin( pObj, pFanin, pFaninNew ); Counter2++; } } if ( fVerbose ) printf( "Added %d inverters (%.2f %% fanins) (%.2f %% compl fanins).\n", Counter, 100.0 * Counter / Total, 100.0 * Counter2 / Total ); Vec_IntFree( vInvs ); Vec_IntFillExtra( pNtk->vPhases, Abc_NtkObjNumMax(pNtk), 0 ); // duplicate network in topo order vInvs = pNtk->vPhases; pNtk->vPhases = NULL; pNtkNew = Abc_NtkDupDfs( pNtk ); pNtk->vPhases = vInvs; return pNtkNew; } Abc_Ntk_t * Abc_SclUnBufferPhase( Abc_Ntk_t * pNtk, int fVerbose ) { Abc_Ntk_t * pNtkNew; Abc_Obj_t * pObj, * pFanin, * pFaninNew; int i, k, iLit, Counter = 0, Total = 0; assert( pNtk->vPhases == NULL ); pNtk->vPhases = Vec_IntStart( Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNodeCo( pNtk, pObj, i ) { if ( Abc_SclObjIsBufInv(pObj) ) continue; Abc_ObjForEachFanin( pObj, pFanin, k ) { Total++; iLit = Abc_SclGetRealFaninLit( pFanin ); pFaninNew = Abc_NtkObj( pNtk, Abc_Lit2Var(iLit) ); if ( pFaninNew == pFanin ) continue; // skip fanins which are already fanins of the node if ( Abc_NodeFindFanin( pObj, pFaninNew ) >= 0 ) continue; Abc_ObjPatchFanin( pObj, pFanin, pFaninNew ); if ( Abc_LitIsCompl(iLit) ) Abc_ObjFaninFlipPhase( pObj, k ), Counter++; } } if ( fVerbose ) printf( "Saved %d (%.2f %%) fanin phase bits. ", Counter, 100.0 * Counter / Total ); // duplicate network in topo order pNtkNew = Abc_NtkDupDfs( pNtk ); if ( fVerbose ) printf( "Max depth = %d.\n", Abc_SclCountMaxPhases(pNtkNew) ); Abc_SclReportDupFanins( pNtkNew ); return pNtkNew; } /**Function************************************************************* Synopsis [Make sure the network is in topo order without dangling nodes.] Description [Returns 1 iff the network is fine.] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_SclCheckNtk( Abc_Ntk_t * p, int fVerbose ) { Abc_Obj_t * pObj, * pFanin; int i, k, fFlag = 1; Abc_NtkIncrementTravId( p ); Abc_NtkForEachCi( p, pObj, i ) Abc_NodeSetTravIdCurrent( pObj ); Abc_NtkForEachNode( p, pObj, i ) { Abc_ObjForEachFanin( pObj, pFanin, k ) if ( !Abc_NodeIsTravIdCurrent( pFanin ) ) printf( "obj %d and its fanin %d are not in the topo order\n", Abc_ObjId(pObj), Abc_ObjId(pFanin) ), fFlag = 0; Abc_NodeSetTravIdCurrent( pObj ); if ( Abc_ObjFanoutNum(pObj) == 0 ) printf( "node %d has no fanout\n", Abc_ObjId(pObj) ), fFlag = 0; if ( !fFlag ) break; } if ( fFlag && fVerbose ) printf( "The network is in topo order and no dangling nodes.\n" ); return fFlag; } /**Function************************************************************* Synopsis [Performs buffering of the mapped network (old code).] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NodeInvUpdateFanPolarity( Abc_Obj_t * pObj ) { Abc_Obj_t * pFanout; int i; assert( Abc_ObjFaninNum(pObj) == 0 || Abc_SclObjIsBufInv(pObj) ); Abc_ObjForEachFanout( pObj, pFanout, i ) { assert( Abc_ObjFaninNum(pFanout) > 0 ); if ( Abc_SclObjIsBufInv(pFanout) ) Abc_NodeInvUpdateFanPolarity( pFanout ); else Abc_ObjFaninFlipPhase( pFanout, Abc_NodeFindFanin(pFanout, pObj) ); } } void Abc_NodeInvUpdateObjFanoutPolarity( Abc_Obj_t * pObj, Abc_Obj_t * pFanout ) { if ( Abc_SclObjIsBufInv(pFanout) ) Abc_NodeInvUpdateFanPolarity( pFanout ); else Abc_ObjFaninFlipPhase( pFanout, Abc_NodeFindFanin(pFanout, pObj) ); } int Abc_NodeCompareLevels( Abc_Obj_t ** pp1, Abc_Obj_t ** pp2 ) { int Diff = Abc_ObjLevel(*pp1) - Abc_ObjLevel(*pp2); if ( Diff < 0 ) return -1; if ( Diff > 0 ) return 1; Diff = (*pp1)->Id - (*pp2)->Id; // needed to make qsort() platform-infependent if ( Diff < 0 ) return -1; if ( Diff > 0 ) return 1; return 0; } int Abc_SclComputeReverseLevel( Abc_Obj_t * pObj ) { Abc_Obj_t * pFanout; int i, Level = 0; Abc_ObjForEachFanout( pObj, pFanout, i ) Level = Abc_MaxInt( Level, pFanout->Level ); return Level + 1; } Abc_Obj_t * Abc_SclPerformBufferingOne( Abc_Obj_t * pObj, int Degree, int fUseInvs, int fVerbose ) { Vec_Ptr_t * vFanouts; Abc_Obj_t * pBuffer, * pFanout; int i, Degree0 = Degree; assert( Abc_ObjFanoutNum(pObj) > Degree ); // collect fanouts and sort by reverse level vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) ); Abc_NodeCollectFanouts( pObj, vFanouts ); Vec_PtrSort( vFanouts, (int (*)(void))Abc_NodeCompareLevels ); // select the first Degree fanouts if ( fUseInvs ) pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL ); else pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL ); // check if it is possible to not increase level if ( Vec_PtrSize(vFanouts) < 2 * Degree ) { Abc_Obj_t * pFanPrev = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Vec_PtrSize(vFanouts)-1-Degree); Abc_Obj_t * pFanThis = (Abc_Obj_t *)Vec_PtrEntry(vFanouts, Degree-1); Abc_Obj_t * pFanLast = (Abc_Obj_t *)Vec_PtrEntryLast(vFanouts); if ( Abc_ObjLevel(pFanThis) == Abc_ObjLevel(pFanLast) && Abc_ObjLevel(pFanPrev) < Abc_ObjLevel(pFanThis) ) { // find the first one whose level is the same as last Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i ) if ( Abc_ObjLevel(pFanout) == Abc_ObjLevel(pFanLast) ) break; assert( i < Vec_PtrSize(vFanouts) ); if ( i > 1 ) Degree = i; } // make the last two more well-balanced if ( Degree == Degree0 && Degree > Vec_PtrSize(vFanouts) - Degree ) Degree = Vec_PtrSize(vFanouts)/2 + (Vec_PtrSize(vFanouts) & 1); assert( Degree <= Degree0 ); } // select fanouts Vec_PtrForEachEntryStop( Abc_Obj_t *, vFanouts, pFanout, i, Degree ) Abc_ObjPatchFanin( pFanout, pObj, pBuffer ); if ( fVerbose ) { printf( "%5d : ", Abc_ObjId(pObj) ); Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i ) printf( "%d%s ", Abc_ObjLevel(pFanout), i == Degree-1 ? " " : "" ); printf( "\n" ); } Vec_PtrFree( vFanouts ); Abc_ObjAddFanin( pBuffer, pObj ); pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer ); if ( fUseInvs ) Abc_NodeInvUpdateFanPolarity( pBuffer ); return pBuffer; } void Abc_SclPerformBuffering_rec( Abc_Obj_t * pObj, int DegreeR, int Degree, int fUseInvs, int fVerbose ) { Vec_Ptr_t * vFanouts; Abc_Obj_t * pBuffer; Abc_Obj_t * pFanout; int i, nOldFanNum; if ( Abc_NodeIsTravIdCurrent( pObj ) ) return; Abc_NodeSetTravIdCurrent( pObj ); pObj->Level = 0; if ( Abc_ObjIsCo(pObj) ) return; assert( Abc_ObjIsCi(pObj) || Abc_ObjIsNode(pObj) ); // buffer fanouts and collect reverse levels Abc_ObjForEachFanout( pObj, pFanout, i ) Abc_SclPerformBuffering_rec( pFanout, DegreeR, Degree, fUseInvs, fVerbose ); // perform buffering as long as needed nOldFanNum = Abc_ObjFanoutNum(pObj); while ( Abc_ObjFanoutNum(pObj) > Degree ) Abc_SclPerformBufferingOne( pObj, Degree, fUseInvs, fVerbose ); // add yet another level of buffers if ( DegreeR && nOldFanNum > DegreeR ) { if ( fUseInvs ) pBuffer = Abc_NtkCreateNodeInv( pObj->pNtk, NULL ); else pBuffer = Abc_NtkCreateNodeBuf( pObj->pNtk, NULL ); vFanouts = Vec_PtrAlloc( Abc_ObjFanoutNum(pObj) ); Abc_NodeCollectFanouts( pObj, vFanouts ); Vec_PtrForEachEntry( Abc_Obj_t *, vFanouts, pFanout, i ) Abc_ObjPatchFanin( pFanout, pObj, pBuffer ); Vec_PtrFree( vFanouts ); Abc_ObjAddFanin( pBuffer, pObj ); pBuffer->Level = Abc_SclComputeReverseLevel( pBuffer ); if ( fUseInvs ) Abc_NodeInvUpdateFanPolarity( pBuffer ); } // compute the new level of the node pObj->Level = Abc_SclComputeReverseLevel( pObj ); } Abc_Ntk_t * Abc_SclPerformBuffering( Abc_Ntk_t * p, int DegreeR, int Degree, int fUseInvs, int fVerbose ) { Vec_Int_t * vCiLevs; Abc_Ntk_t * pNew; Abc_Obj_t * pObj; int i; assert( Abc_NtkHasMapping(p) ); if ( fUseInvs ) { printf( "Warning!!! Using inverters instead of buffers.\n" ); if ( p->vPhases == NULL ) printf( "The phases are not given. The result will not verify.\n" ); } // remember CI levels vCiLevs = Vec_IntAlloc( Abc_NtkCiNum(p) ); Abc_NtkForEachCi( p, pObj, i ) Vec_IntPush( vCiLevs, Abc_ObjLevel(pObj) ); // perform buffering Abc_NtkIncrementTravId( p ); Abc_NtkForEachCi( p, pObj, i ) Abc_SclPerformBuffering_rec( pObj, DegreeR, Degree, fUseInvs, fVerbose ); // recompute logic levels Abc_NtkForEachCi( p, pObj, i ) pObj->Level = Vec_IntEntry( vCiLevs, i ); Abc_NtkForEachNode( p, pObj, i ) Abc_ObjLevelNew( pObj ); Vec_IntFree( vCiLevs ); // if phases are present if ( p->vPhases ) Vec_IntFillExtra( p->vPhases, Abc_NtkObjNumMax(p), 0 ); // duplication in topo order pNew = Abc_NtkDupDfs( p ); Abc_SclCheckNtk( pNew, fVerbose ); // Abc_NtkDelete( pNew ); return pNew; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ float Abc_BufComputeArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { Abc_Obj_t * pFanin; int i; float DelayF, Delay = -ABC_INFINITY; Abc_ObjForEachFanin( pObj, pFanin, i ) { if ( Vec_IntEntry(p->vOffsets, Abc_ObjId(pObj)) == -ABC_INFINITY ) continue; DelayF = Abc_BufNodeArr(p, pFanin) + Abc_BufEdgeDelay(p, pObj, i); if ( Delay < DelayF ) Delay = DelayF; } Abc_BufSetNodeArr( p, pObj, Delay ); return Delay; } float Abc_BufComputeDep( Buf_Man_t * p, Abc_Obj_t * pObj ) { Abc_Obj_t * pFanout; int i; float DelayF, Delay = -ABC_INFINITY; Abc_ObjForEachFanout( pObj, pFanout, i ) { if ( Vec_IntEntry(p->vOffsets, Abc_ObjId(pFanout)) == -ABC_INFINITY ) continue; DelayF = Abc_BufNodeDep(p, pFanout) + Abc_BufEdgeDelay(p, pFanout, Abc_NodeFindFanin(pFanout, pObj)); if ( Delay < DelayF ) Delay = DelayF; } Abc_BufSetNodeDep( p, pObj, Delay ); return Delay; } void Abc_BufUpdateGlobal( Buf_Man_t * p ) { Abc_Obj_t * pObj; int i; p->DelayMax = 0; Abc_NtkForEachCo( p->pNtk, pObj, i ) p->DelayMax = Abc_MaxInt( p->DelayMax, Abc_BufNodeArr(p, Abc_ObjFanin0(pObj)) ); } void Abc_BufCreateEdges( Buf_Man_t * p, Abc_Obj_t * pObj ) { int k; Mio_Gate_t * pGate = Abc_ObjIsCo(pObj) ? NULL : (Mio_Gate_t *)pObj->pData; Vec_IntWriteEntry( p->vOffsets, Abc_ObjId(pObj), Vec_IntSize(p->vEdges) ); for ( k = 0; k < Abc_ObjFaninNum(pObj); k++ ) Vec_IntPush( p->vEdges, pGate ? (int)(1.0 * BUF_SCALE * Mio_GateReadPinDelay(pGate, k) / p->DelayInv) : 0 ); } void Abc_BufAddToQue( Buf_Man_t * p, Abc_Obj_t * pObj ) { if ( Abc_ObjFanoutNum(pObj) < p->nFanMin || (!p->fBufPis && Abc_ObjIsCi(pObj)) ) return; Vec_FltWriteEntry( p->vCounts, Abc_ObjId(pObj), Abc_ObjFanoutNum(pObj) ); if ( Vec_QueIsMember(p->vQue, Abc_ObjId(pObj)) ) Vec_QueUpdate( p->vQue, Abc_ObjId(pObj) ); else Vec_QuePush( p->vQue, Abc_ObjId(pObj) ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_BufCollectTfoCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes ) { Abc_Obj_t * pNext; int i; if ( Abc_NodeIsTravIdCurrent( pNode ) ) return; Abc_NodeSetTravIdCurrent( pNode ); if ( Abc_ObjIsCo(pNode) ) return; assert( Abc_ObjIsCi(pNode) || Abc_ObjIsNode(pNode) ); Abc_ObjForEachFanout( pNode, pNext, i ) Abc_BufCollectTfoCone_rec( pNext, vNodes ); if ( Abc_ObjIsNode(pNode) ) Vec_IntPush( vNodes, Abc_ObjId(pNode) ); } void Abc_BufCollectTfoCone( Buf_Man_t * p, Abc_Obj_t * pObj ) { Vec_IntClear( p->vTfCone ); Abc_NtkIncrementTravId( p->pNtk ); Abc_BufCollectTfoCone_rec( pObj, p->vTfCone ); } void Abc_BufUpdateArr( Buf_Man_t * p, Abc_Obj_t * pObj ) { Abc_Obj_t * pNext; int i, Delay; // assert( Abc_ObjIsNode(pObj) ); Abc_BufCollectTfoCone( p, pObj ); Vec_IntReverseOrder( p->vTfCone ); Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i ) { Delay = Abc_BufComputeArr( p, pNext ); p->DelayMax = Abc_MaxInt( p->DelayMax, Delay ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_BufCollectTfiCone_rec( Abc_Obj_t * pNode, Vec_Int_t * vNodes ) { Abc_Obj_t * pNext; int i; if ( Abc_NodeIsTravIdCurrent( pNode ) ) return; Abc_NodeSetTravIdCurrent( pNode ); if ( Abc_ObjIsCi(pNode) ) return; assert( Abc_ObjIsNode(pNode) ); Abc_ObjForEachFanin( pNode, pNext, i ) Abc_BufCollectTfiCone_rec( pNext, vNodes ); Vec_IntPush( vNodes, Abc_ObjId(pNode) ); } void Abc_BufCollectTfiCone( Buf_Man_t * p, Abc_Obj_t * pObj ) { Vec_IntClear( p->vTfCone ); Abc_NtkIncrementTravId( p->pNtk ); Abc_BufCollectTfiCone_rec( pObj, p->vTfCone ); } void Abc_BufUpdateDep( Buf_Man_t * p, Abc_Obj_t * pObj ) { Abc_Obj_t * pNext; int i, Delay; // assert( Abc_ObjIsNode(pObj) ); Abc_BufCollectTfiCone( p, pObj ); Vec_IntReverseOrder( p->vTfCone ); Abc_NtkForEachObjVec( p->vTfCone, p->pNtk, pNext, i ) { Delay = Abc_BufComputeDep( p, pNext ); p->DelayMax = Abc_MaxInt( p->DelayMax, Delay ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Buf_Man_t * Buf_ManStart( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fBufPis ) { Buf_Man_t * p; Abc_Obj_t * pObj; Vec_Ptr_t * vNodes; int i; p = ABC_CALLOC( Buf_Man_t, 1 ); p->pNtk = pNtk; p->nFanMin = FanMin; p->nFanMax = FanMax; p->fBufPis = fBufPis; // allocate arrays p->nObjStart = Abc_NtkObjNumMax(p->pNtk); p->nObjAlloc = (6 * Abc_NtkObjNumMax(p->pNtk) / 3) + 100; p->vOffsets = Vec_IntAlloc( p->nObjAlloc ); p->vArr = Vec_IntAlloc( p->nObjAlloc ); p->vDep = Vec_IntAlloc( p->nObjAlloc ); p->vCounts = Vec_FltAlloc( p->nObjAlloc ); p->vQue = Vec_QueAlloc( p->nObjAlloc ); Vec_IntFill( p->vOffsets, p->nObjAlloc, -ABC_INFINITY ); Vec_IntFill( p->vArr, p->nObjAlloc, 0 ); Vec_IntFill( p->vDep, p->nObjAlloc, 0 ); Vec_FltFill( p->vCounts, p->nObjAlloc, -ABC_INFINITY ); Vec_QueSetPriority( p->vQue, Vec_FltArrayP(p->vCounts) ); // collect edge delays p->DelayInv = Mio_GateReadPinDelay( Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc), 0 ); p->vEdges = Vec_IntAlloc( 1000 ); // create edges vNodes = Abc_NtkDfs( p->pNtk, 0 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Abc_BufCreateEdges( p, pObj ); Abc_NtkForEachCo( p->pNtk, pObj, i ) Abc_BufCreateEdges( p, pObj ); // derive delays Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Abc_BufComputeArr( p, pObj ); Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i ) Abc_BufComputeDep( p, pObj ); Abc_BufUpdateGlobal( p ); // Abc_NtkForEachNode( p->pNtk, pObj, i ) // printf( "%4d : %4d %4d\n", i, Abc_BufNodeArr(p, pObj), Abc_BufNodeDep(p, pObj) ); // create fanout queue // Abc_NtkForEachCi( p->pNtk, pObj, i ) // Abc_BufAddToQue( p, pObj ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) Abc_BufAddToQue( p, pObj ); Vec_PtrFree( vNodes ); p->vDelays = Vec_IntAlloc( 100 ); p->vOrder = Vec_IntAlloc( 100 ); p->vNonCrit = Vec_IntAlloc( 100 ); p->vTfCone = Vec_IntAlloc( 100 ); p->vFanouts = Vec_PtrAlloc( 100 ); return p; } void Buf_ManStop( Buf_Man_t * p ) { printf( "Sep = %d. Dup = %d. Br0 = %d. Br1 = %d. BrC = %d. ", p->nSeparate, p->nDuplicate, p->nBranch0, p->nBranch1, p->nBranchCrit ); printf( "Orig = %d. Add = %d. Rem = %d.\n", p->nObjStart, Abc_NtkObjNumMax(p->pNtk) - p->nObjStart, p->nObjAlloc - Abc_NtkObjNumMax(p->pNtk) ); Vec_PtrFree( p->vFanouts ); Vec_IntFree( p->vTfCone ); Vec_IntFree( p->vNonCrit ); Vec_IntFree( p->vDelays ); Vec_IntFree( p->vOrder ); Vec_IntFree( p->vOffsets ); Vec_IntFree( p->vEdges ); Vec_IntFree( p->vArr ); Vec_IntFree( p->vDep ); // Vec_QueCheck( p->vQue ); Vec_QueFree( p->vQue ); Vec_FltFree( p->vCounts ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Abc_BufSortByDelay( Buf_Man_t * p, int iPivot ) { Abc_Obj_t * pObj, * pFanout; int i, Slack, * pOrder; Vec_IntClear( p->vDelays ); pObj = Abc_NtkObj( p->pNtk, iPivot ); Abc_ObjForEachFanout( pObj, pFanout, i ) { Slack = Abc_BufEdgeSlack(p, pObj, pFanout); assert( Slack >= 0 ); Vec_IntPush( p->vDelays, Abc_MaxInt(0, Slack) ); } pOrder = Abc_QuickSortCost( Vec_IntArray(p->vDelays), Vec_IntSize(p->vDelays), 0 ); Vec_IntClear( p->vOrder ); for ( i = 0; i < Vec_IntSize(p->vDelays); i++ ) Vec_IntPush( p->vOrder, Abc_ObjId(Abc_ObjFanout(pObj, pOrder[i])) ); ABC_FREE( pOrder ); // for ( i = 0; i < Vec_IntSize(p->vDelays); i++ ) // printf( "%5d - %5d ", Vec_IntEntry(p->vOrder, i), Abc_BufEdgeSlack(p, pObj, Abc_NtkObj(p->pNtk, Vec_IntEntry(p->vOrder, i))) ); return p->vOrder; } void Abc_BufPrintOne( Buf_Man_t * p, int iPivot ) { Abc_Obj_t * pObj, * pFanout; Vec_Int_t * vOrder; int i, Slack; pObj = Abc_NtkObj( p->pNtk, iPivot ); vOrder = Abc_BufSortByDelay( p, iPivot ); printf( "Node %5d Fi = %d Fo = %3d Lev = %3d : {", iPivot, Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), Abc_ObjLevel(pObj) ); Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i ) { Slack = Abc_BufEdgeSlack( p, pObj, pFanout ); printf( " %d(%d)", Abc_ObjId(pFanout), Slack ); } printf( " }\n" ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_BufReplaceBufsByInvs( Abc_Ntk_t * pNtk ) { Abc_Obj_t * pObj, * pInv; int i, Counter = 0; Abc_NtkForEachNode( pNtk, pObj, i ) { if ( !Abc_NodeIsBuf(pObj) ) continue; assert( pObj->pData == Mio_LibraryReadBuf((Mio_Library_t *)pNtk->pManFunc) ); pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)pNtk->pManFunc); pInv = Abc_NtkCreateNodeInv( pNtk, Abc_ObjFanin0(pObj) ); Abc_ObjPatchFanin( pObj, Abc_ObjFanin0(pObj), pInv ); Counter++; } printf( "Replaced %d buffers by invertor pairs.\n", Counter ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_BufComputeAverage( Buf_Man_t * p, int iPivot, Vec_Int_t * vOrder ) { Abc_Obj_t * pObj, * pFanout; int i, Average = 0; pObj = Abc_NtkObj( p->pNtk, iPivot ); Abc_NtkForEachObjVec( vOrder, p->pNtk, pFanout, i ) Average += Abc_BufEdgeSlack( p, pObj, pFanout ); return Average / Vec_IntSize(vOrder); } Abc_Obj_t * Abc_BufFindNonBuffDriver( Buf_Man_t * p, Abc_Obj_t * pObj ) { return (Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj)) ? Abc_BufFindNonBuffDriver(p, Abc_ObjFanin0(pObj)) : pObj; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_BufCountNonCritical( Buf_Man_t * p, Abc_Obj_t * pObj ) { Abc_Obj_t * pFanout; int i; Vec_IntClear( p->vNonCrit ); Abc_ObjForEachFanout( pObj, pFanout, i ) if ( Abc_BufEdgeSlack( p, pObj, pFanout ) > 7*BUF_SCALE/2 ) Vec_IntPush( p->vNonCrit, Abc_ObjId(pFanout) ); return Vec_IntSize(p->vNonCrit); } void Abc_BufPerformOne( Buf_Man_t * p, int iPivot, int fSkipDup, int fVerbose ) { Abc_Obj_t * pObj, * pFanout; int i, j, nCrit, nNonCrit; // int DelayMax = p->DelayMax; assert( Abc_NtkObjNumMax(p->pNtk) + 30 < p->nObjAlloc ); pObj = Abc_NtkObj( p->pNtk, iPivot ); // assert( Vec_FltEntry(p->vCounts, iPivot) == (float)Abc_ObjFanoutNum(pObj) ); nNonCrit = Abc_BufCountNonCritical( p, pObj ); nCrit = Abc_ObjFanoutNum(pObj) - nNonCrit; if ( fVerbose ) { //Abc_BufPrintOne( p, iPivot ); printf( "ObjId = %6d : %-10s FI = %d. FO =%4d. Crit =%4d. ", Abc_ObjId(pObj), Mio_GateReadName((Mio_Gate_t *)pObj->pData), Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj), nCrit ); } // consider three cases if ( nCrit > 0 && nNonCrit > 1 ) { // (1) both critical and non-critical are present - split them by adding buffer Abc_Obj_t * pBuffer = Abc_NtkCreateNodeBuf( p->pNtk, pObj ); Abc_NtkForEachObjVec( p->vNonCrit, p->pNtk, pFanout, i ) Abc_ObjPatchFanin( pFanout, pObj, pBuffer ); // update timing Abc_BufCreateEdges( p, pBuffer ); Abc_BufUpdateArr( p, pBuffer ); Abc_BufUpdateDep( p, pBuffer ); Abc_BufAddToQue( p, pObj ); Abc_BufAddToQue( p, pBuffer ); Abc_SclTimeIncUpdateLevel( pBuffer ); p->nSeparate++; if ( fVerbose ) printf( "Adding buffer\n" ); } else if ( !fSkipDup && nCrit > 0 && Abc_ObjIsNode(pObj) && Abc_ObjFanoutNum(pObj) > p->nFanMin )//&& Abc_ObjLevel(pObj) < 4 )//&& Abc_ObjFaninNum(pObj) < 2 ) { // (2) only critical are present - duplicate Abc_Obj_t * pClone = Abc_NtkDupObj( p->pNtk, pObj, 0 ); Abc_ObjForEachFanin( pObj, pFanout, i ) Abc_ObjAddFanin( pClone, pFanout ); Abc_NodeCollectFanouts( pObj, p->vFanouts ); Vec_PtrForEachEntryStop( Abc_Obj_t *, p->vFanouts, pFanout, i, Vec_PtrSize(p->vFanouts)/2 ) Abc_ObjPatchFanin( pFanout, pObj, pClone ); // update timing Abc_BufCreateEdges( p, pClone ); Abc_BufSetNodeArr( p, pClone, Abc_BufNodeArr(p, pObj) ); Abc_BufUpdateDep( p, pObj ); Abc_BufUpdateDep( p, pClone ); Abc_BufAddToQue( p, pObj ); Abc_BufAddToQue( p, pClone ); Abc_ObjForEachFanin( pObj, pFanout, i ) Abc_BufAddToQue( p, pFanout ); Abc_SclTimeIncUpdateLevel( pClone ); p->nDuplicate++; // printf( "Duplicating %s on level %d\n", Mio_GateReadName((Mio_Gate_t *)pObj->pData), Abc_ObjLevel(pObj) ); if ( fVerbose ) printf( "Duplicating node\n" ); } else if ( (nCrit > 0 && Abc_ObjFanoutNum(pObj) > 8) || Abc_ObjFanoutNum(pObj) > p->nFanMax ) { // (2) only critical or only non-critical - add buffer/inverter tree int nDegree, n1Degree, n1Number, nFirst; int iFirstBuf = Abc_NtkObjNumMax( p->pNtk ); // nDegree = Abc_MinInt( 3, (int)pow(Abc_ObjFanoutNum(pObj), 0.34) ); nDegree = Abc_MinInt( 10, (int)pow(Abc_ObjFanoutNum(pObj), 0.5) ); n1Degree = Abc_ObjFanoutNum(pObj) / nDegree + 1; n1Number = Abc_ObjFanoutNum(pObj) % nDegree; nFirst = n1Degree * n1Number; p->nBranchCrit += (nCrit > 0); // create inverters Abc_NodeCollectFanouts( pObj, p->vFanouts ); if ( Abc_ObjIsNode(pObj) && Abc_NodeIsBuf(pObj) ) { p->nBranch0++; pObj->pData = Mio_LibraryReadInv((Mio_Library_t *)p->pNtk->pManFunc); Abc_BufSetEdgeDelay( p, pObj, 0, BUF_SCALE ); assert( Abc_NodeIsInv(pObj) ); for ( i = 0; i < nDegree; i++ ) Abc_NtkCreateNodeInv( p->pNtk, pObj ); if ( fVerbose ) printf( "Adding %d inverters\n", nDegree ); } else { p->nBranch1++; for ( i = 0; i < nDegree; i++ ) Abc_NtkCreateNodeBuf( p->pNtk, pObj ); if ( fVerbose ) printf( "Adding %d buffers\n", nDegree ); } // connect inverters Vec_PtrForEachEntry( Abc_Obj_t *, p->vFanouts, pFanout, i ) { j = (i < nFirst) ? i/n1Degree : n1Number + ((i - nFirst)/(n1Degree - 1)); assert( j >= 0 && j < nDegree ); Abc_ObjPatchFanin( pFanout, pObj, Abc_NtkObj(p->pNtk, iFirstBuf + j) ); } // update timing for ( i = 0; i < nDegree; i++ ) Abc_BufCreateEdges( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) ); Abc_BufUpdateArr( p, pObj ); for ( i = 0; i < nDegree; i++ ) Abc_BufComputeDep( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) ); Abc_BufUpdateDep( p, pObj ); for ( i = 0; i < nDegree; i++ ) Abc_BufAddToQue( p, Abc_NtkObj(p->pNtk, iFirstBuf + i) ); for ( i = 0; i < nDegree; i++ ) Abc_SclTimeIncUpdateLevel( Abc_NtkObj(p->pNtk, iFirstBuf + i) ); } else { if ( fVerbose ) printf( "Doing nothing\n" ); } // if ( DelayMax != p->DelayMax ) // printf( "%d (%.2f) ", p->DelayMax, 1.0 * p->DelayMax * p->DelayInv / BUF_SCALE ); } Abc_Ntk_t * Abc_SclBufPerform( Abc_Ntk_t * pNtk, int FanMin, int FanMax, int fBufPis, int fSkipDup, int fVerbose ) { Abc_Ntk_t * pNew; Buf_Man_t * p = Buf_ManStart( pNtk, FanMin, FanMax, fBufPis ); int i, Limit = ABC_INFINITY; Abc_NtkLevel( pNtk ); // if ( Abc_NtkNodeNum(pNtk) < 1000 ) // fSkipDup = 1; for ( i = 0; i < Limit && Vec_QueSize(p->vQue); i++ ) Abc_BufPerformOne( p, Vec_QuePop(p->vQue), fSkipDup, fVerbose ); Buf_ManStop( p ); // Abc_BufReplaceBufsByInvs( pNtk ); // duplicate network in topo order pNew = Abc_NtkDupDfs( pNtk ); Abc_SclCheckNtk( pNew, fVerbose ); return pNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END