/**CFile**************************************************************** FileName [ioWriteBlif.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Command processing package.] Synopsis [Procedures to write BLIF files.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: ioWriteBlif.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "ioAbc.h" #include "base/main/main.h" #include "map/mio/mio.h" #include "bool/kit/kit.h" #include "map/if/if.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static void Io_NtkWrite( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches, int fBb2Wb, int fSeq ); static void Io_NtkWriteOne( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches, int fBb2Wb, int fSeq ); static void Io_NtkWritePis( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches ); static void Io_NtkWritePos( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches ); static void Io_NtkWriteSubckt( FILE * pFile, Abc_Obj_t * pNode ); static void Io_NtkWriteAsserts( FILE * pFile, Abc_Ntk_t * pNtk ); static void Io_NtkWriteNodeFanins( FILE * pFile, Abc_Obj_t * pNode ); static int Io_NtkWriteNode( FILE * pFile, Abc_Obj_t * pNode, int Length ); static void Io_NtkWriteLatch( FILE * pFile, Abc_Obj_t * pLatch ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Write the network into a BLIF file with the given name.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteBlifLogic( Abc_Ntk_t * pNtk, char * FileName, int fWriteLatches ) { Abc_Ntk_t * pNtkTemp; // derive the netlist pNtkTemp = Abc_NtkToNetlist(pNtk); if ( pNtkTemp == NULL ) { fprintf( stdout, "Writing BLIF has failed.\n" ); return; } Io_WriteBlif( pNtkTemp, FileName, fWriteLatches, 0, 0 ); Abc_NtkDelete( pNtkTemp ); } /**Function************************************************************* Synopsis [Write the network into a BLIF file with the given name.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteBlif( Abc_Ntk_t * pNtk, char * FileName, int fWriteLatches, int fBb2Wb, int fSeq ) { FILE * pFile; Abc_Ntk_t * pNtkTemp; int i; assert( Abc_NtkIsNetlist(pNtk) ); // start writing the file pFile = fopen( FileName, "w" ); if ( pFile == NULL ) { fprintf( stdout, "Io_WriteBlif(): Cannot open the output file.\n" ); return; } fprintf( pFile, "# Benchmark \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() ); // write the master network Io_NtkWrite( pFile, pNtk, fWriteLatches, fBb2Wb, fSeq ); // make sure there is no logic hierarchy // assert( Abc_NtkWhiteboxNum(pNtk) == 0 ); // write the hierarchy if present if ( Abc_NtkBlackboxNum(pNtk) > 0 || Abc_NtkWhiteboxNum(pNtk) > 0 ) { Vec_PtrForEachEntry( Abc_Ntk_t *, pNtk->pDesign->vModules, pNtkTemp, i ) { if ( pNtkTemp == pNtk ) continue; fprintf( pFile, "\n\n" ); Io_NtkWrite( pFile, pNtkTemp, fWriteLatches, fBb2Wb, fSeq ); } } fclose( pFile ); } /**Function************************************************************* Synopsis [Write the network into a BLIF file with the given name.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWrite( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches, int fBb2Wb, int fSeq ) { Abc_Ntk_t * pExdc; assert( Abc_NtkIsNetlist(pNtk) ); // write the model name fprintf( pFile, ".model %s\n", Abc_NtkName(pNtk) ); // write the network Io_NtkWriteOne( pFile, pNtk, fWriteLatches, fBb2Wb, fSeq ); // write EXDC network if it exists pExdc = Abc_NtkExdc( pNtk ); if ( pExdc ) { fprintf( pFile, "\n" ); fprintf( pFile, ".exdc\n" ); Io_NtkWriteOne( pFile, pExdc, fWriteLatches, fBb2Wb, fSeq ); } // finalize the file fprintf( pFile, ".end\n" ); } /**Function************************************************************* Synopsis [Write one network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteConvertedBox( FILE * pFile, Abc_Ntk_t * pNtk, int fSeq ) { Abc_Obj_t * pObj; int i, v; if ( fSeq ) { fprintf( pFile, ".attrib white box seq\n" ); } else { fprintf( pFile, ".attrib white box comb\n" ); fprintf( pFile, ".delay 1\n" ); } Abc_NtkForEachPo( pNtk, pObj, i ) { // write the .names line fprintf( pFile, ".names" ); Io_NtkWritePis( pFile, pNtk, 1 ); if ( fSeq ) fprintf( pFile, " %s_in\n", Abc_ObjName(Abc_ObjFanin0(pObj)) ); else fprintf( pFile, " %s\n", Abc_ObjName(Abc_ObjFanin0(pObj)) ); for ( v = 0; v < Abc_NtkPiNum(pNtk); v++ ) fprintf( pFile, "1" ); fprintf( pFile, " 1\n" ); if ( fSeq ) fprintf( pFile, ".latch %s_in %s 1\n", Abc_ObjName(Abc_ObjFanin0(pObj)), Abc_ObjName(Abc_ObjFanin0(pObj)) ); } } /**Function************************************************************* Synopsis [Write one network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteOne( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches, int fBb2Wb, int fSeq ) { ProgressBar * pProgress; Abc_Obj_t * pNode, * pLatch; int i, Length; // write the PIs fprintf( pFile, ".inputs" ); Io_NtkWritePis( pFile, pNtk, fWriteLatches ); fprintf( pFile, "\n" ); // write the POs fprintf( pFile, ".outputs" ); Io_NtkWritePos( pFile, pNtk, fWriteLatches ); fprintf( pFile, "\n" ); // write the blackbox if ( Abc_NtkHasBlackbox( pNtk ) ) { if ( fBb2Wb ) Io_NtkWriteConvertedBox( pFile, pNtk, fSeq ); else fprintf( pFile, ".blackbox\n" ); return; } // write the timing info Io_WriteTimingInfo( pFile, pNtk ); // write the latches if ( fWriteLatches && !Abc_NtkIsComb(pNtk) ) { fprintf( pFile, "\n" ); Abc_NtkForEachLatch( pNtk, pLatch, i ) Io_NtkWriteLatch( pFile, pLatch ); fprintf( pFile, "\n" ); } // write the subcircuits // assert( Abc_NtkWhiteboxNum(pNtk) == 0 ); if ( Abc_NtkBlackboxNum(pNtk) > 0 || Abc_NtkWhiteboxNum(pNtk) > 0 ) { fprintf( pFile, "\n" ); Abc_NtkForEachBlackbox( pNtk, pNode, i ) Io_NtkWriteSubckt( pFile, pNode ); fprintf( pFile, "\n" ); Abc_NtkForEachWhitebox( pNtk, pNode, i ) Io_NtkWriteSubckt( pFile, pNode ); fprintf( pFile, "\n" ); } // write each internal node Length = Abc_NtkHasMapping(pNtk)? Mio_LibraryReadGateNameMax((Mio_Library_t *)pNtk->pManFunc) : 0; pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNode( pNtk, pNode, i ) { Extra_ProgressBarUpdate( pProgress, i, NULL ); if ( Io_NtkWriteNode( pFile, pNode, Length ) ) // skip the next node i++; } Extra_ProgressBarStop( pProgress ); } /**Function************************************************************* Synopsis [Writes the primary input list.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWritePis( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches ) { Abc_Obj_t * pTerm, * pNet; int LineLength; int AddedLength; int NameCounter; int i; LineLength = 7; NameCounter = 0; if ( fWriteLatches ) { Abc_NtkForEachPi( pNtk, pTerm, i ) { pNet = Abc_ObjFanout0(pTerm); // get the line length after this name is written AddedLength = strlen(Abc_ObjName(pNet)) + 1; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", Abc_ObjName(pNet) ); LineLength += AddedLength; NameCounter++; } } else { Abc_NtkForEachCi( pNtk, pTerm, i ) { pNet = Abc_ObjFanout0(pTerm); // get the line length after this name is written AddedLength = strlen(Abc_ObjName(pNet)) + 1; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", Abc_ObjName(pNet) ); LineLength += AddedLength; NameCounter++; } } } /**Function************************************************************* Synopsis [Writes the primary input list.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWritePos( FILE * pFile, Abc_Ntk_t * pNtk, int fWriteLatches ) { Abc_Obj_t * pTerm, * pNet; int LineLength; int AddedLength; int NameCounter; int i; LineLength = 8; NameCounter = 0; if ( fWriteLatches ) { Abc_NtkForEachPo( pNtk, pTerm, i ) { pNet = Abc_ObjFanin0(pTerm); // get the line length after this name is written AddedLength = strlen(Abc_ObjName(pNet)) + 1; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", Abc_ObjName(pNet) ); LineLength += AddedLength; NameCounter++; } } else { Abc_NtkForEachCo( pNtk, pTerm, i ) { pNet = Abc_ObjFanin0(pTerm); // get the line length after this name is written AddedLength = strlen(Abc_ObjName(pNet)) + 1; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", Abc_ObjName(pNet) ); LineLength += AddedLength; NameCounter++; } } } /**Function************************************************************* Synopsis [Write the latch into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteSubckt( FILE * pFile, Abc_Obj_t * pNode ) { Abc_Ntk_t * pModel = (Abc_Ntk_t *)pNode->pData; Abc_Obj_t * pTerm; int i; // write the subcircuit // fprintf( pFile, ".subckt %s %s", Abc_NtkName(pModel), Abc_ObjName(pNode) ); fprintf( pFile, ".subckt %s", Abc_NtkName(pModel) ); // write pairs of the formal=actual names Abc_NtkForEachPi( pModel, pTerm, i ) { fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanout0(pTerm)) ); pTerm = Abc_ObjFanin( pNode, i ); fprintf( pFile, "=%s", Abc_ObjName(Abc_ObjFanin0(pTerm)) ); } Abc_NtkForEachPo( pModel, pTerm, i ) { fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin0(pTerm)) ); pTerm = Abc_ObjFanout( pNode, i ); fprintf( pFile, "=%s", Abc_ObjName(Abc_ObjFanout0(pTerm)) ); } fprintf( pFile, "\n" ); } /**Function************************************************************* Synopsis [Write the latch into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteLatch( FILE * pFile, Abc_Obj_t * pLatch ) { Abc_Obj_t * pNetLi, * pNetLo; int Reset; pNetLi = Abc_ObjFanin0( Abc_ObjFanin0(pLatch) ); pNetLo = Abc_ObjFanout0( Abc_ObjFanout0(pLatch) ); Reset = (int)(ABC_PTRUINT_T)Abc_ObjData( pLatch ); // write the latch line fprintf( pFile, ".latch" ); fprintf( pFile, " %10s", Abc_ObjName(pNetLi) ); fprintf( pFile, " %10s", Abc_ObjName(pNetLo) ); fprintf( pFile, " %d\n", Reset-1 ); } /**Function************************************************************* Synopsis [Writes the primary input list.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteNodeFanins( FILE * pFile, Abc_Obj_t * pNode ) { Abc_Obj_t * pNet; int LineLength; int AddedLength; int NameCounter; char * pName; int i; LineLength = 6; NameCounter = 0; Abc_ObjForEachFanin( pNode, pNet, i ) { // get the fanin name pName = Abc_ObjName(pNet); // get the line length after the fanin name is written AddedLength = strlen(pName) + 1; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", pName ); LineLength += AddedLength; NameCounter++; } // get the output name pName = Abc_ObjName(Abc_ObjFanout0(pNode)); // get the line length after the output name is written AddedLength = strlen(pName) + 1; if ( NameCounter && LineLength + AddedLength > 75 ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %s", pName ); } /**Function************************************************************* Synopsis [Writes the primary input list.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteSubcktFanins( FILE * pFile, Abc_Obj_t * pNode ) { Abc_Obj_t * pNet; int LineLength; int AddedLength; int NameCounter; char * pName; int i; LineLength = 6; NameCounter = 0; // get the output name pName = Abc_ObjName(Abc_ObjFanout0(pNode)); // get the line length after the output name is written AddedLength = strlen(pName) + 1; fprintf( pFile, " m%d", Abc_ObjId(pNode) ); // get the input names Abc_ObjForEachFanin( pNode, pNet, i ) { // get the fanin name pName = Abc_ObjName(pNet); // get the line length after the fanin name is written AddedLength = strlen(pName) + 3; if ( NameCounter && LineLength + AddedLength + 3 > IO_WRITE_LINE_LENGTH ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %c=%s", 'a'+i, pName ); LineLength += AddedLength; NameCounter++; } // get the output name pName = Abc_ObjName(Abc_ObjFanout0(pNode)); // get the line length after the output name is written AddedLength = strlen(pName) + 3; if ( NameCounter && LineLength + AddedLength > 75 ) { // write the line extender fprintf( pFile, " \\\n" ); // reset the line length LineLength = 0; NameCounter = 0; } fprintf( pFile, " %c=%s", 'o', pName ); } /**Function************************************************************* Synopsis [Writes the primary input list.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Io_NtkWriteNodeGate( FILE * pFile, Abc_Obj_t * pNode, int Length ) { static int fReport = 0; Mio_Gate_t * pGate = (Mio_Gate_t *)pNode->pData; Mio_Pin_t * pGatePin; Abc_Obj_t * pNode2; int i; fprintf( pFile, " %-*s ", Length, Mio_GateReadName(pGate) ); for ( pGatePin = Mio_GateReadPins(pGate), i = 0; pGatePin; pGatePin = Mio_PinReadNext(pGatePin), i++ ) fprintf( pFile, "%s=%s ", Mio_PinReadName(pGatePin), Abc_ObjName( Abc_ObjFanin(pNode,i) ) ); assert ( i == Abc_ObjFaninNum(pNode) ); fprintf( pFile, "%s=%s", Mio_GateReadOutName(pGate), Abc_ObjName( Abc_ObjFanout0(pNode) ) ); if ( Mio_GateReadTwin(pGate) == NULL ) return 0; pNode2 = Abc_NtkFetchTwinNode( pNode ); if ( pNode2 == NULL ) { if ( !fReport ) fReport = 1, printf( "Warning: Missing second output of gate(s) \"%s\".\n", Mio_GateReadName(pGate) ); return 0; } fprintf( pFile, " %s=%s", Mio_GateReadOutName((Mio_Gate_t *)pNode2->pData), Abc_ObjName( Abc_ObjFanout0(pNode2) ) ); return 1; } /**Function************************************************************* Synopsis [Write the node into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Io_NtkWriteNode( FILE * pFile, Abc_Obj_t * pNode, int Length ) { int RetValue = 0; if ( Abc_NtkHasMapping(pNode->pNtk) ) { // write the .gate line fprintf( pFile, ".gate" ); RetValue = Io_NtkWriteNodeGate( pFile, pNode, Length ); fprintf( pFile, "\n" ); } else { // write the .names line fprintf( pFile, ".names" ); Io_NtkWriteNodeFanins( pFile, pNode ); fprintf( pFile, "\n" ); // write the cubes fprintf( pFile, "%s", (char*)Abc_ObjData(pNode) ); } return RetValue; } /**Function************************************************************* Synopsis [Write the node into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Io_NtkWriteNodeSubckt( FILE * pFile, Abc_Obj_t * pNode, int Length ) { int RetValue = 0; fprintf( pFile, ".subckt" ); Io_NtkWriteSubcktFanins( pFile, pNode ); fprintf( pFile, "\n" ); return RetValue; } /**Function************************************************************* Synopsis [Writes the timing info.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteTimingInfo( FILE * pFile, Abc_Ntk_t * pNtk ) { Abc_Obj_t * pNode; Abc_Time_t * pTime, * pTimeDef; int i; if ( pNtk->pManTime == NULL ) return; fprintf( pFile, "\n" ); if ( pNtk->AndGateDelay != 0.0 ) fprintf( pFile, ".and_gate_delay %g\n", pNtk->AndGateDelay ); pTimeDef = Abc_NtkReadDefaultArrival( pNtk ); if ( pTimeDef->Rise != 0.0 || pTimeDef->Fall != 0.0 ) fprintf( pFile, ".default_input_arrival %g %g\n", pTimeDef->Rise, pTimeDef->Fall ); Abc_NtkForEachPi( pNtk, pNode, i ) { pTime = Abc_NodeReadArrival(pNode); if ( pTime->Rise == pTimeDef->Rise && pTime->Fall == pTimeDef->Fall ) continue; fprintf( pFile, ".input_arrival %s %g %g\n", Abc_ObjName(Abc_ObjFanout0(pNode)), pTime->Rise, pTime->Fall ); } pTimeDef = Abc_NtkReadDefaultRequired( pNtk ); if ( pTimeDef->Rise != ABC_INFINITY || pTimeDef->Fall != ABC_INFINITY ) fprintf( pFile, ".default_output_required %g %g\n", pTimeDef->Rise, pTimeDef->Fall ); Abc_NtkForEachPo( pNtk, pNode, i ) { pTime = Abc_NodeReadRequired(pNode); if ( pTime->Rise == pTimeDef->Rise && pTime->Fall == pTimeDef->Fall ) continue; fprintf( pFile, ".output_required %s %g %g\n", Abc_ObjName(Abc_ObjFanin0(pNode)), pTime->Rise, pTime->Fall ); } fprintf( pFile, "\n" ); pTimeDef = Abc_NtkReadDefaultInputDrive( pNtk ); if ( pTimeDef->Rise != 0.0 || pTimeDef->Fall != 0.0 ) fprintf( pFile, ".default_input_drive %g %g\n", pTimeDef->Rise, pTimeDef->Fall ); if ( Abc_NodeReadInputDrive( pNtk, 0 ) ) Abc_NtkForEachPi( pNtk, pNode, i ) { pTime = Abc_NodeReadInputDrive( pNtk, i ); if ( pTime->Rise == pTimeDef->Rise && pTime->Fall == pTimeDef->Fall ) continue; fprintf( pFile, ".input_drive %s %g %g\n", Abc_ObjName(Abc_ObjFanout0(pNode)), pTime->Rise, pTime->Fall ); } pTimeDef = Abc_NtkReadDefaultOutputLoad( pNtk ); if ( pTimeDef->Rise != 0.0 || pTimeDef->Fall != 0.0 ) fprintf( pFile, ".default_output_load %g %g\n", pTimeDef->Rise, pTimeDef->Fall ); if ( Abc_NodeReadOutputLoad( pNtk, 0 ) ) Abc_NtkForEachPo( pNtk, pNode, i ) { pTime = Abc_NodeReadOutputLoad( pNtk, i ); if ( pTime->Rise == pTimeDef->Rise && pTime->Fall == pTimeDef->Fall ) continue; fprintf( pFile, ".output_load %s %g %g\n", Abc_ObjName(Abc_ObjFanin0(pNode)), pTime->Rise, pTime->Fall ); } fprintf( pFile, "\n" ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkConvertBb2Wb( char * pFileNameIn, char * pFileNameOut, int fSeq, int fVerbose ) { FILE * pFile; Abc_Ntk_t * pNetlist; // check the files pFile = fopen( pFileNameIn, "rb" ); if ( pFile == NULL ) { printf( "Input file \"%s\" cannot be opened.\n", pFileNameIn ); return; } fclose( pFile ); // check the files pFile = fopen( pFileNameOut, "wb" ); if ( pFile == NULL ) { printf( "Output file \"%s\" cannot be opened.\n", pFileNameOut ); return; } fclose( pFile ); // derive AIG for signal correspondence pNetlist = Io_ReadNetlist( pFileNameIn, Io_ReadFileType(pFileNameIn), 1 ); if ( pNetlist == NULL ) { printf( "Reading input file \"%s\" has failed.\n", pFileNameIn ); return; } Io_WriteBlif( pNetlist, pFileNameOut, 1, 1, fSeq ); Abc_NtkDelete( pNetlist ); } /**Function************************************************************* Synopsis [Transforms truth table into an SOP.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ char * Io_NtkDeriveSop( Mem_Flex_t * pMem, word uTruth, int nVars, Vec_Int_t * vCover ) { char * pSop; int RetValue = Kit_TruthIsop( (unsigned *)&uTruth, nVars, vCover, 1 ); assert( RetValue == 0 || RetValue == 1 ); // check the case of constant cover if ( Vec_IntSize(vCover) == 0 || (Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover,0) == 0) ) { char * pStr0 = " 0\n", * pStr1 = " 1\n"; assert( RetValue == 0 ); return Vec_IntSize(vCover) == 0 ? pStr0 : pStr1; } // derive the AIG for that tree pSop = Abc_SopCreateFromIsop( pMem, nVars, vCover ); if ( RetValue ) Abc_SopComplement( pSop ); return pSop; } /**Function************************************************************* Synopsis [Write the node into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteNodeInt( FILE * pFile, Abc_Obj_t * pNode, Vec_Int_t * vCover ) { Abc_Obj_t * pNet; int i, nVars = Abc_ObjFaninNum(pNode); if ( nVars > 7 ) { printf( "Node \"%s\" has more than 7 inputs. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } fprintf( pFile, "\n" ); if ( nVars <= 4 ) { // write the .names line fprintf( pFile, ".names" ); Abc_ObjForEachFanin( pNode, pNet, i ) fprintf( pFile, " %s", Abc_ObjName(pNet) ); // get the output name fprintf( pFile, " %s\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); // write the cubes fprintf( pFile, "%s", (char*)Abc_ObjData(pNode) ); } else { extern int If_Dec6PickBestMux( word t, word Cofs[2] ); extern int If_Dec7PickBestMux( word t[2], word c0r[2], word c1r[2] ); extern word If_Dec6MinimumBase( word uTruth, int * pSupp, int nVarsAll, int * pnVars ); extern void If_Dec7MinimumBase( word uTruth[2], int * pSupp, int nVarsAll, int * pnVars ); extern word If_Dec6Perform( word t, int fDerive ); extern word If_Dec7Perform( word t[2], int fDerive ); char * pSop; word z, uTruth6 = 0, uTruth7[2], Cofs6[2], Cofs7[2][2]; int c, iVar, nVarsMin[2], pVars[2][10]; // collect variables Abc_ObjForEachFanin( pNode, pNet, i ) pVars[0][i] = pVars[1][i] = i; // derive truth table if ( nVars == 7 ) { Abc_SopToTruth7( (char*)Abc_ObjData(pNode), nVars, uTruth7 ); iVar = If_Dec7PickBestMux( uTruth7, Cofs7[0], Cofs7[1] ); } else { uTruth6 = Abc_SopToTruth( (char*)Abc_ObjData(pNode), nVars ); iVar = If_Dec6PickBestMux( uTruth6, Cofs6 ); } // perform MUX decomposition if ( iVar >= 0 ) { if ( nVars == 7 ) { If_Dec7MinimumBase( Cofs7[0], pVars[0], nVars, &nVarsMin[0] ); If_Dec7MinimumBase( Cofs7[1], pVars[1], nVars, &nVarsMin[1] ); } else { Cofs6[0] = If_Dec6MinimumBase( Cofs6[0], pVars[0], nVars, &nVarsMin[0] ); Cofs6[1] = If_Dec6MinimumBase( Cofs6[1], pVars[1], nVars, &nVarsMin[1] ); } assert( nVarsMin[0] < 5 ); assert( nVarsMin[1] < 5 ); // write MUX fprintf( pFile, ".names" ); fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,iVar)) ); fprintf( pFile, " %s_cascade0", Abc_ObjName(Abc_ObjFanout0(pNode)) ); fprintf( pFile, " %s_cascade1", Abc_ObjName(Abc_ObjFanout0(pNode)) ); fprintf( pFile, " %s\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); fprintf( pFile, "1-1 1\n01- 1\n" ); // write cofactors for ( c = 0; c < 2; c++ ) { pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, (word)(nVars == 7 ? Cofs7[c][0] : Cofs6[c]), nVarsMin[c], vCover ); fprintf( pFile, ".names" ); for ( i = 0; i < nVarsMin[c]; i++ ) fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,pVars[c][i])) ); fprintf( pFile, " %s_cascade%d\n", Abc_ObjName(Abc_ObjFanout0(pNode)), c ); fprintf( pFile, "%s", pSop ); } return; } assert( nVars == 6 || nVars == 7 ); // try cascade decomposition if ( nVars == 7 ) { z = If_Dec7Perform( uTruth7, 1 ); //If_Dec7Verify( uTruth7, z ); } else { z = If_Dec6Perform( uTruth6, 1 ); //If_Dec6Verify( uTruth6, z ); } if ( z == 0 ) { printf( "Node \"%s\" is not decomposable. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } // derive nodes for ( c = 1; c >= 0; c-- ) { // collect fanins uTruth7[c] = ((c ? z >> 32 : z) & 0xffff); uTruth7[c] |= (uTruth7[c] << 16); uTruth7[c] |= (uTruth7[c] << 32); for ( i = 0; i < 4; i++ ) pVars[c][i] = (z >> (c*32+16+4*i)) & 7; // minimize truth table Cofs6[c] = If_Dec6MinimumBase( uTruth7[c], pVars[c], 4, &nVarsMin[c] ); // write the nodes fprintf( pFile, ".names" ); for ( i = 0; i < nVarsMin[c]; i++ ) if ( pVars[c][i] == 7 ) fprintf( pFile, " %s_cascade", Abc_ObjName(Abc_ObjFanout0(pNode)) ); else fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,pVars[c][i])) ); fprintf( pFile, " %s%s\n", Abc_ObjName(Abc_ObjFanout0(pNode)), c? "" : "_cascade" ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, (word)Cofs6[c], nVarsMin[c], vCover ); fprintf( pFile, "%s", pSop ); } } } /**Function************************************************************* Synopsis [Write the node into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteNodeIntStruct( FILE * pFile, Abc_Obj_t * pNode, Vec_Int_t * vCover, char * pStr ) { Abc_Obj_t * pNet; int nLeaves = Abc_ObjFaninNum(pNode); int i, nLutLeaf, nLutLeaf2, nLutRoot, Length; // quit if parameters are wrong Length = strlen(pStr); if ( Length != 2 && Length != 3 ) { printf( "Wrong LUT struct (%s)\n", pStr ); return; } for ( i = 0; i < Length; i++ ) if ( pStr[i] - '0' < 3 || pStr[i] - '0' > 6 ) { printf( "The LUT size (%d) should belong to {3,4,5,6}.\n", pStr[i] - '0' ); return; } nLutLeaf = pStr[0] - '0'; nLutLeaf2 = ( Length == 3 ) ? pStr[1] - '0' : 0; nLutRoot = pStr[Length-1] - '0'; if ( nLeaves > nLutLeaf - 1 + (nLutLeaf2 ? nLutLeaf2 - 1 : 0) + nLutRoot ) { printf( "The node size (%d) is too large for the LUT structure %s.\n", nLeaves, pStr ); return; } // consider easy case fprintf( pFile, "\n" ); if ( nLeaves <= Abc_MaxInt( nLutLeaf2, Abc_MaxInt(nLutLeaf, nLutRoot) ) ) { // write the .names line fprintf( pFile, ".names" ); Abc_ObjForEachFanin( pNode, pNet, i ) fprintf( pFile, " %s", Abc_ObjName(pNet) ); // get the output name fprintf( pFile, " %s\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); // write the cubes fprintf( pFile, "%s", (char*)Abc_ObjData(pNode) ); return; } else { extern int If_CluMinimumBase( word * t, int * pSupp, int nVarsAll, int * pnVars ); static word TruthStore[16][1<<10] = {{0}}, * pTruths[16]; word pCube[1<<10], pRes[1<<10], Func0, Func1, Func2; char pLut0[32], pLut1[32], pLut2[32] = {0}, * pSop; // int nVarsMin[3], pVars[3][20]; if ( TruthStore[0][0] == 0 ) { static word Truth6[6] = { ABC_CONST(0xAAAAAAAAAAAAAAAA), ABC_CONST(0xCCCCCCCCCCCCCCCC), ABC_CONST(0xF0F0F0F0F0F0F0F0), ABC_CONST(0xFF00FF00FF00FF00), ABC_CONST(0xFFFF0000FFFF0000), ABC_CONST(0xFFFFFFFF00000000) }; int nVarsMax = 16; int nWordsMax = (1 << 10); int i, k; assert( nVarsMax <= 16 ); for ( i = 0; i < nVarsMax; i++ ) pTruths[i] = TruthStore[i]; for ( i = 0; i < 6; i++ ) for ( k = 0; k < nWordsMax; k++ ) pTruths[i][k] = Truth6[i]; for ( i = 6; i < nVarsMax; i++ ) for ( k = 0; k < nWordsMax; k++ ) pTruths[i][k] = ((k >> (i-6)) & 1) ? ~(word)0 : 0; } // collect variables // Abc_ObjForEachFanin( pNode, pNet, i ) // pVars[0][i] = pVars[1][i] = pVars[2][i] = i; // derive truth table Abc_SopToTruthBig( (char*)Abc_ObjData(pNode), nLeaves, pTruths, pCube, pRes ); if ( Kit_TruthIsConst0((unsigned *)pRes, nLeaves) || Kit_TruthIsConst1((unsigned *)pRes, nLeaves) ) { fprintf( pFile, ".names %s\n %d\n", Abc_ObjName(Abc_ObjFanout0(pNode)), Kit_TruthIsConst1((unsigned *)pRes, nLeaves) ); return; } // Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); // Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); // perform decomposition if ( Length == 2 ) { if ( !If_CluCheckExt( NULL, pRes, nLeaves, nLutLeaf, nLutRoot, pLut0, pLut1, &Func0, &Func1 ) ) { Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); printf( "Node \"%s\" is not decomposable. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } } else { if ( !If_CluCheckExt3( NULL, pRes, nLeaves, nLutLeaf, nLutLeaf2, nLutRoot, pLut0, pLut1, pLut2, &Func0, &Func1, &Func2 ) ) { Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); printf( "Node \"%s\" is not decomposable. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } } // write leaf node fprintf( pFile, ".names" ); for ( i = 0; i < pLut1[0]; i++ ) fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,pLut1[2+i])) ); fprintf( pFile, " %s_lut1\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func1, pLut1[0], vCover ); fprintf( pFile, "%s", pSop ); if ( Length == 3 && pLut2[0] > 0 ) { // write leaf node fprintf( pFile, ".names" ); for ( i = 0; i < pLut2[0]; i++ ) if ( pLut2[2+i] == nLeaves ) fprintf( pFile, " %s_lut1", Abc_ObjName(Abc_ObjFanout0(pNode)) ); else fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,pLut2[2+i])) ); fprintf( pFile, " %s_lut2\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func2, pLut2[0], vCover ); fprintf( pFile, "%s", pSop ); } // write root node fprintf( pFile, ".names" ); for ( i = 0; i < pLut0[0]; i++ ) if ( pLut0[2+i] == nLeaves ) fprintf( pFile, " %s_lut1", Abc_ObjName(Abc_ObjFanout0(pNode)) ); else if ( pLut0[2+i] == nLeaves+1 ) fprintf( pFile, " %s_lut2", Abc_ObjName(Abc_ObjFanout0(pNode)) ); else fprintf( pFile, " %s", Abc_ObjName(Abc_ObjFanin(pNode,pLut0[2+i])) ); fprintf( pFile, " %s\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func0, pLut0[0], vCover ); fprintf( pFile, "%s", pSop ); } } /**Function************************************************************* Synopsis [Write the node into a file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_NtkWriteModelIntStruct( FILE * pFile, Abc_Obj_t * pNode, Vec_Int_t * vCover, char * pStr ) { Abc_Obj_t * pNet; int nLeaves = Abc_ObjFaninNum(pNode); int i, nLutLeaf, nLutLeaf2, nLutRoot, Length; // write the header fprintf( pFile, "\n" ); fprintf( pFile, ".model m%d\n", Abc_ObjId(pNode) ); fprintf( pFile, ".inputs" ); for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ ) fprintf( pFile, " %c", 'a' + i ); fprintf( pFile, "\n" ); fprintf( pFile, ".outputs o\n" ); // quit if parameters are wrong Length = strlen(pStr); if ( Length != 2 && Length != 3 ) { printf( "Wrong LUT struct (%s)\n", pStr ); return; } for ( i = 0; i < Length; i++ ) if ( pStr[i] - '0' < 3 || pStr[i] - '0' > 6 ) { printf( "The LUT size (%d) should belong to {3,4,5,6}.\n", pStr[i] - '0' ); return; } nLutLeaf = pStr[0] - '0'; nLutLeaf2 = ( Length == 3 ) ? pStr[1] - '0' : 0; nLutRoot = pStr[Length-1] - '0'; if ( nLeaves > nLutLeaf - 1 + (nLutLeaf2 ? nLutLeaf2 - 1 : 0) + nLutRoot ) { printf( "The node size (%d) is too large for the LUT structure %s.\n", nLeaves, pStr ); return; } // consider easy case if ( nLeaves <= Abc_MaxInt( nLutLeaf2, Abc_MaxInt(nLutLeaf, nLutRoot) ) ) { // write the .names line fprintf( pFile, ".names" ); Abc_ObjForEachFanin( pNode, pNet, i ) fprintf( pFile, " %c", 'a' + i ); // get the output name fprintf( pFile, " %s\n", "o" ); // write the cubes fprintf( pFile, "%s", (char*)Abc_ObjData(pNode) ); fprintf( pFile, ".end\n" ); return; } else { extern int If_CluMinimumBase( word * t, int * pSupp, int nVarsAll, int * pnVars ); static word TruthStore[16][1<<10] = {{0}}, * pTruths[16]; word pCube[1<<10], pRes[1<<10], Func0, Func1, Func2; char pLut0[32], pLut1[32], pLut2[32] = {0}, * pSop; // int nVarsMin[3], pVars[3][20]; if ( TruthStore[0][0] == 0 ) { static word Truth6[6] = { ABC_CONST(0xAAAAAAAAAAAAAAAA), ABC_CONST(0xCCCCCCCCCCCCCCCC), ABC_CONST(0xF0F0F0F0F0F0F0F0), ABC_CONST(0xFF00FF00FF00FF00), ABC_CONST(0xFFFF0000FFFF0000), ABC_CONST(0xFFFFFFFF00000000) }; int nVarsMax = 16; int nWordsMax = (1 << 10); int i, k; assert( nVarsMax <= 16 ); for ( i = 0; i < nVarsMax; i++ ) pTruths[i] = TruthStore[i]; for ( i = 0; i < 6; i++ ) for ( k = 0; k < nWordsMax; k++ ) pTruths[i][k] = Truth6[i]; for ( i = 6; i < nVarsMax; i++ ) for ( k = 0; k < nWordsMax; k++ ) pTruths[i][k] = ((k >> (i-6)) & 1) ? ~(word)0 : 0; } // collect variables // Abc_ObjForEachFanin( pNode, pNet, i ) // pVars[0][i] = pVars[1][i] = pVars[2][i] = i; // derive truth table Abc_SopToTruthBig( (char*)Abc_ObjData(pNode), nLeaves, pTruths, pCube, pRes ); if ( Kit_TruthIsConst0((unsigned *)pRes, nLeaves) || Kit_TruthIsConst1((unsigned *)pRes, nLeaves) ) { fprintf( pFile, ".names %s\n %d\n", "o", Kit_TruthIsConst1((unsigned *)pRes, nLeaves) ); fprintf( pFile, ".end\n" ); return; } // Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); // Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); // perform decomposition if ( Length == 2 ) { if ( !If_CluCheckExt( NULL, pRes, nLeaves, nLutLeaf, nLutRoot, pLut0, pLut1, &Func0, &Func1 ) ) { Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); printf( "Node \"%s\" is not decomposable. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } } else { if ( !If_CluCheckExt3( NULL, pRes, nLeaves, nLutLeaf, nLutLeaf2, nLutRoot, pLut0, pLut1, pLut2, &Func0, &Func1, &Func2 ) ) { Extra_PrintHex( stdout, (unsigned *)pRes, nLeaves ); printf( " " ); Kit_DsdPrintFromTruth( (unsigned*)pRes, nLeaves ); printf( "\n" ); printf( "Node \"%s\" is not decomposable. Writing BLIF has failed.\n", Abc_ObjName(Abc_ObjFanout0(pNode)) ); return; } } // write leaf node fprintf( pFile, ".names" ); for ( i = 0; i < pLut1[0]; i++ ) fprintf( pFile, " %c", 'a' + pLut1[2+i] ); fprintf( pFile, " lut1\n" ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func1, pLut1[0], vCover ); fprintf( pFile, "%s", pSop ); if ( Length == 3 && pLut2[0] > 0 ) { // write leaf node fprintf( pFile, ".names" ); for ( i = 0; i < pLut2[0]; i++ ) if ( pLut2[2+i] == nLeaves ) fprintf( pFile, " lut1" ); else fprintf( pFile, " %c", 'a' + pLut2[2+i] ); fprintf( pFile, " lut2\n" ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func2, pLut2[0], vCover ); fprintf( pFile, "%s", pSop ); } // write root node fprintf( pFile, ".names" ); for ( i = 0; i < pLut0[0]; i++ ) if ( pLut0[2+i] == nLeaves ) fprintf( pFile, " lut1" ); else if ( pLut0[2+i] == nLeaves+1 ) fprintf( pFile, " lut2" ); else fprintf( pFile, " %c", 'a' + pLut0[2+i] ); fprintf( pFile, " %s\n", "o" ); // write SOP pSop = Io_NtkDeriveSop( (Mem_Flex_t *)Abc_ObjNtk(pNode)->pManFunc, Func0, pLut0[0], vCover ); fprintf( pFile, "%s", pSop ); fprintf( pFile, ".end\n" ); } } /**Function************************************************************* Synopsis [Write the network into a BLIF file with the given name.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteBlifInt( Abc_Ntk_t * pNtk, char * FileName, char * pLutStruct, int fUseHie ) { FILE * pFile; Vec_Int_t * vCover; Abc_Obj_t * pNode, * pLatch; int i; assert( Abc_NtkIsNetlist(pNtk) ); // start writing the file pFile = fopen( FileName, "w" ); if ( pFile == NULL ) { fprintf( stdout, "Io_WriteBlifInt(): Cannot open the output file.\n" ); return; } fprintf( pFile, "# Benchmark \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() ); // write the model name fprintf( pFile, ".model %s\n", Abc_NtkName(pNtk) ); // write the PIs fprintf( pFile, ".inputs" ); Io_NtkWritePis( pFile, pNtk, 1 ); fprintf( pFile, "\n" ); // write the POs fprintf( pFile, ".outputs" ); Io_NtkWritePos( pFile, pNtk, 1 ); fprintf( pFile, "\n" ); // write the latches if ( Abc_NtkLatchNum(pNtk) ) fprintf( pFile, "\n" ); Abc_NtkForEachLatch( pNtk, pLatch, i ) Io_NtkWriteLatch( pFile, pLatch ); if ( Abc_NtkLatchNum(pNtk) ) fprintf( pFile, "\n" ); // write the hierarchy vCover = Vec_IntAlloc( (1<<16) ); if ( fUseHie ) { // write each internal node fprintf( pFile, "\n" ); Abc_NtkForEachNode( pNtk, pNode, i ) Io_NtkWriteNodeSubckt( pFile, pNode, 0 ); fprintf( pFile, ".end\n\n" ); // write models Abc_NtkForEachNode( pNtk, pNode, i ) Io_NtkWriteModelIntStruct( pFile, pNode, vCover, pLutStruct ); fprintf( pFile, "\n" ); } else { // write each internal node Abc_NtkForEachNode( pNtk, pNode, i ) { if ( pLutStruct ) Io_NtkWriteNodeIntStruct( pFile, pNode, vCover, pLutStruct ); else Io_NtkWriteNodeInt( pFile, pNode, vCover ); } fprintf( pFile, ".end\n\n" ); } Vec_IntFree( vCover ); fclose( pFile ); } /**Function************************************************************* Synopsis [Write the network into a BLIF file with the given name.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteBlifSpecial( Abc_Ntk_t * pNtk, char * FileName, char * pLutStruct, int fUseHie ) { Abc_Ntk_t * pNtkTemp; assert( Abc_NtkIsLogic(pNtk) ); Abc_NtkToSop( pNtk, 0 ); // derive the netlist pNtkTemp = Abc_NtkToNetlist(pNtk); if ( pNtkTemp == NULL ) { fprintf( stdout, "Writing BLIF has failed.\n" ); return; } if ( pLutStruct && fUseHie ) Io_WriteBlifInt( pNtkTemp, FileName, pLutStruct, 1 ); else Io_WriteBlifInt( pNtkTemp, FileName, pLutStruct, 0 ); Abc_NtkDelete( pNtkTemp ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END