/**CFile**************************************************************** FileName [llb3Image.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [BDD based reachability.] Synopsis [Computes image using partitioned structure.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: llb3Image.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "llbInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// typedef struct Llb_Var_t_ Llb_Var_t; struct Llb_Var_t_ { int iVar; // variable number int nScore; // variable score Vec_Int_t * vParts; // partitions }; typedef struct Llb_Prt_t_ Llb_Prt_t; struct Llb_Prt_t_ { int iPart; // partition number int nSize; // the number of BDD nodes DdNode * bFunc; // the partition Vec_Int_t * vVars; // support }; typedef struct Llb_Mgr_t_ Llb_Mgr_t; struct Llb_Mgr_t_ { DdManager * dd; // working BDD manager Vec_Int_t * vVars2Q; // variables to quantify int nSizeMax; // maximum size of the cluster // internal Llb_Prt_t ** pParts; // partitions Llb_Var_t ** pVars; // variables int iPartFree; // next free partition int nVars; // the number of BDD variables int nSuppMax; // maximum support size // temporary int * pSupp; // temporary support storage }; static inline Llb_Var_t * Llb_MgrVar( Llb_Mgr_t * p, int i ) { return p->pVars[i]; } static inline Llb_Prt_t * Llb_MgrPart( Llb_Mgr_t * p, int i ) { return p->pParts[i]; } // iterator over vars #define Llb_MgrForEachVar( p, pVar, i ) \ for ( i = 0; (i < p->nVars) && (((pVar) = Llb_MgrVar(p, i)), 1); i++ ) if ( pVar == NULL ) {} else // iterator over parts #define Llb_MgrForEachPart( p, pPart, i ) \ for ( i = 0; (i < p->iPartFree) && (((pPart) = Llb_MgrPart(p, i)), 1); i++ ) if ( pPart == NULL ) {} else // iterator over vars of one partition #define Llb_PartForEachVar( p, pPart, pVar, i ) \ for ( i = 0; (i < Vec_IntSize(pPart->vVars)) && (((pVar) = Llb_MgrVar(p, Vec_IntEntry(pPart->vVars,i))), 1); i++ ) // iterator over parts of one variable #define Llb_VarForEachPart( p, pVar, pPart, i ) \ for ( i = 0; (i < Vec_IntSize(pVar->vParts)) && (((pPart) = Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,i))), 1); i++ ) // statistics //abctime timeBuild, timeAndEx, timeOther; //int nSuppMax; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Removes one variable.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4RemoveVar( Llb_Mgr_t * p, Llb_Var_t * pVar ) { assert( p->pVars[pVar->iVar] == pVar ); p->pVars[pVar->iVar] = NULL; Vec_IntFree( pVar->vParts ); ABC_FREE( pVar ); } /**Function************************************************************* Synopsis [Removes one partition.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4RemovePart( Llb_Mgr_t * p, Llb_Prt_t * pPart ) { //printf( "Removing %d\n", pPart->iPart ); assert( p->pParts[pPart->iPart] == pPart ); p->pParts[pPart->iPart] = NULL; Vec_IntFree( pPart->vVars ); Cudd_RecursiveDeref( p->dd, pPart->bFunc ); ABC_FREE( pPart ); } /**Function************************************************************* Synopsis [Create cube with singleton variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_Nonlin4CreateCube1( Llb_Mgr_t * p, Llb_Prt_t * pPart ) { DdNode * bCube, * bTemp; Llb_Var_t * pVar; int i; abctime TimeStop; TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0; bCube = Cudd_ReadOne(p->dd); Cudd_Ref( bCube ); Llb_PartForEachVar( p, pPart, pVar, i ) { assert( Vec_IntSize(pVar->vParts) > 0 ); if ( Vec_IntSize(pVar->vParts) != 1 ) continue; assert( Vec_IntEntry(pVar->vParts, 0) == pPart->iPart ); bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) ); Cudd_Ref( bCube ); Cudd_RecursiveDeref( p->dd, bTemp ); } Cudd_Deref( bCube ); p->dd->TimeStop = TimeStop; return bCube; } /**Function************************************************************* Synopsis [Create cube of variables appearing only in two partitions.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_Nonlin4CreateCube2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2 ) { DdNode * bCube, * bTemp; Llb_Var_t * pVar; int i; abctime TimeStop; TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0; bCube = Cudd_ReadOne(p->dd); Cudd_Ref( bCube ); Llb_PartForEachVar( p, pPart1, pVar, i ) { assert( Vec_IntSize(pVar->vParts) > 0 ); if ( Vec_IntSize(pVar->vParts) != 2 ) continue; if ( (Vec_IntEntry(pVar->vParts, 0) == pPart1->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart2->iPart) || (Vec_IntEntry(pVar->vParts, 0) == pPart2->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart1->iPart) ) { bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) ); Cudd_Ref( bCube ); Cudd_RecursiveDeref( p->dd, bTemp ); } } Cudd_Deref( bCube ); p->dd->TimeStop = TimeStop; return bCube; } /**Function************************************************************* Synopsis [Returns 1 if partition has singleton variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_Nonlin4HasSingletonVars( Llb_Mgr_t * p, Llb_Prt_t * pPart ) { Llb_Var_t * pVar; int i; Llb_PartForEachVar( p, pPart, pVar, i ) if ( Vec_IntSize(pVar->vParts) == 1 ) return 1; return 0; } /**Function************************************************************* Synopsis [Returns 1 if partition has singleton variables.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4Print( Llb_Mgr_t * p ) { Llb_Prt_t * pPart; Llb_Var_t * pVar; int i, k; printf( "\n" ); Llb_MgrForEachVar( p, pVar, i ) { printf( "Var %3d : ", i ); Llb_VarForEachPart( p, pVar, pPart, k ) printf( "%d ", pPart->iPart ); printf( "\n" ); } Llb_MgrForEachPart( p, pPart, i ) { printf( "Part %3d : ", i ); Llb_PartForEachVar( p, pPart, pVar, k ) printf( "%d ", pVar->iVar ); printf( "\n" ); } } /**Function************************************************************* Synopsis [Quantifies singles belonging to one partition.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_Nonlin4Quantify1( Llb_Mgr_t * p, Llb_Prt_t * pPart ) { Llb_Var_t * pVar; Llb_Prt_t * pTemp; Vec_Ptr_t * vSingles; DdNode * bCube, * bTemp; int i, RetValue, nSizeNew; // create cube to be quantified bCube = Llb_Nonlin4CreateCube1( p, pPart ); Cudd_Ref( bCube ); // assert( !Cudd_IsConstant(bCube) ); // derive new function pPart->bFunc = Cudd_bddExistAbstract( p->dd, bTemp = pPart->bFunc, bCube ); Cudd_Ref( pPart->bFunc ); Cudd_RecursiveDeref( p->dd, bTemp ); Cudd_RecursiveDeref( p->dd, bCube ); // get support vSingles = Vec_PtrAlloc( 0 ); nSizeNew = Cudd_DagSize(pPart->bFunc); Extra_SupportArray( p->dd, pPart->bFunc, p->pSupp ); Llb_PartForEachVar( p, pPart, pVar, i ) if ( p->pSupp[pVar->iVar] ) { assert( Vec_IntSize(pVar->vParts) > 1 ); pVar->nScore -= pPart->nSize - nSizeNew; } else { RetValue = Vec_IntRemove( pVar->vParts, pPart->iPart ); assert( RetValue ); pVar->nScore -= pPart->nSize; if ( Vec_IntSize(pVar->vParts) == 0 ) Llb_Nonlin4RemoveVar( p, pVar ); else if ( Vec_IntSize(pVar->vParts) == 1 ) Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) ); } // update partition pPart->nSize = nSizeNew; Vec_IntClear( pPart->vVars ); for ( i = 0; i < p->nVars; i++ ) if ( p->pSupp[i] && Vec_IntEntry(p->vVars2Q, i) ) Vec_IntPush( pPart->vVars, i ); // remove other variables Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i ) Llb_Nonlin4Quantify1( p, pTemp ); Vec_PtrFree( vSingles ); return 0; } /**Function************************************************************* Synopsis [Quantifies singles belonging to one partition.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_Nonlin4Quantify2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2 ) { int fVerbose = 0; Llb_Var_t * pVar; Llb_Prt_t * pTemp; Vec_Ptr_t * vSingles; DdNode * bCube, * bFunc; int i, RetValue, nSuppSize; // int iPart1 = pPart1->iPart; // int iPart2 = pPart2->iPart; int liveBeg, liveEnd; // create cube to be quantified bCube = Llb_Nonlin4CreateCube2( p, pPart1, pPart2 ); Cudd_Ref( bCube ); //printf( "Quantifying " ); Extra_bddPrintSupport( p->dd, bCube ); printf( "\n" ); if ( fVerbose ) { printf( "\n" ); printf( "\n" ); Llb_Nonlin4Print( p ); printf( "Conjoining partitions %d and %d.\n", pPart1->iPart, pPart2->iPart ); Extra_bddPrintSupport( p->dd, bCube ); printf( "\n" ); } liveBeg = p->dd->keys - p->dd->dead; bFunc = Cudd_bddAndAbstract( p->dd, pPart1->bFunc, pPart2->bFunc, bCube ); liveEnd = p->dd->keys - p->dd->dead; //printf( "%d ", liveEnd-liveBeg ); if ( bFunc == NULL ) { Cudd_RecursiveDeref( p->dd, bCube ); return 0; } Cudd_Ref( bFunc ); Cudd_RecursiveDeref( p->dd, bCube ); //printf( "Creating part %d ", p->iPartFree ); Extra_bddPrintSupport( p->dd, bFunc ); printf( "\n" ); //printf( "Creating %d\n", p->iPartFree ); // create new partition pTemp = p->pParts[p->iPartFree] = ABC_CALLOC( Llb_Prt_t, 1 ); pTemp->iPart = p->iPartFree++; pTemp->nSize = Cudd_DagSize(bFunc); pTemp->bFunc = bFunc; pTemp->vVars = Vec_IntAlloc( 8 ); // update variables Llb_PartForEachVar( p, pPart1, pVar, i ) { RetValue = Vec_IntRemove( pVar->vParts, pPart1->iPart ); assert( RetValue ); pVar->nScore -= pPart1->nSize; } // update variables Llb_PartForEachVar( p, pPart2, pVar, i ) { RetValue = Vec_IntRemove( pVar->vParts, pPart2->iPart ); assert( RetValue ); pVar->nScore -= pPart2->nSize; } // add variables to the new partition nSuppSize = 0; Extra_SupportArray( p->dd, bFunc, p->pSupp ); for ( i = 0; i < p->nVars; i++ ) { nSuppSize += p->pSupp[i]; if ( p->pSupp[i] && Vec_IntEntry(p->vVars2Q, i) ) { pVar = Llb_MgrVar( p, i ); pVar->nScore += pTemp->nSize; Vec_IntPush( pVar->vParts, pTemp->iPart ); Vec_IntPush( pTemp->vVars, i ); } } p->nSuppMax = Abc_MaxInt( p->nSuppMax, nSuppSize ); // remove variables and collect partitions with singleton variables vSingles = Vec_PtrAlloc( 0 ); Llb_PartForEachVar( p, pPart1, pVar, i ) { if ( Vec_IntSize(pVar->vParts) == 0 ) Llb_Nonlin4RemoveVar( p, pVar ); else if ( Vec_IntSize(pVar->vParts) == 1 ) { if ( fVerbose ) printf( "Adding partition %d because of var %d.\n", Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar ); Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) ); } } Llb_PartForEachVar( p, pPart2, pVar, i ) { if ( pVar == NULL ) continue; if ( Vec_IntSize(pVar->vParts) == 0 ) Llb_Nonlin4RemoveVar( p, pVar ); else if ( Vec_IntSize(pVar->vParts) == 1 ) { if ( fVerbose ) printf( "Adding partition %d because of var %d.\n", Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar ); Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) ); } } // remove partitions Llb_Nonlin4RemovePart( p, pPart1 ); Llb_Nonlin4RemovePart( p, pPart2 ); // remove other variables if ( fVerbose ) Llb_Nonlin4Print( p ); Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i ) { if ( fVerbose ) printf( "Updating partitiong %d with singlton vars.\n", pTemp->iPart ); Llb_Nonlin4Quantify1( p, pTemp ); } if ( fVerbose ) Llb_Nonlin4Print( p ); Vec_PtrFree( vSingles ); return 1; } /**Function************************************************************* Synopsis [Computes volume of the cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4CutNodes_rec( Aig_Man_t * p, Aig_Obj_t * pObj, Vec_Ptr_t * vNodes ) { if ( Aig_ObjIsTravIdCurrent(p, pObj) ) return; Aig_ObjSetTravIdCurrent(p, pObj); if ( Saig_ObjIsLi(p, pObj) ) { Llb_Nonlin4CutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes); return; } if ( Aig_ObjIsConst1(pObj) ) return; assert( Aig_ObjIsNode(pObj) ); Llb_Nonlin4CutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes); Llb_Nonlin4CutNodes_rec(p, Aig_ObjFanin1(pObj), vNodes); Vec_PtrPush( vNodes, pObj ); } /**Function************************************************************* Synopsis [Computes volume of the cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Llb_Nonlin4CutNodes( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper ) { Vec_Ptr_t * vNodes; Aig_Obj_t * pObj; int i; // mark the lower cut with the traversal ID Aig_ManIncrementTravId(p); Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i ) Aig_ObjSetTravIdCurrent( p, pObj ); // count the upper cut vNodes = Vec_PtrAlloc( 100 ); Vec_PtrForEachEntry( Aig_Obj_t *, vUpper, pObj, i ) Llb_Nonlin4CutNodes_rec( p, pObj, vNodes ); return vNodes; } /**Function************************************************************* Synopsis [Starts non-linear quantification scheduling.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4AddPair( Llb_Mgr_t * p, int iPart, int iVar ) { if ( p->pVars[iVar] == NULL ) { p->pVars[iVar] = ABC_CALLOC( Llb_Var_t, 1 ); p->pVars[iVar]->iVar = iVar; p->pVars[iVar]->nScore = 0; p->pVars[iVar]->vParts = Vec_IntAlloc( 8 ); } Vec_IntPush( p->pVars[iVar]->vParts, iPart ); Vec_IntPush( p->pParts[iPart]->vVars, iVar ); } /**Function************************************************************* Synopsis [Starts non-linear quantification scheduling.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4AddPartition( Llb_Mgr_t * p, int i, DdNode * bFunc ) { int k, nSuppSize; assert( !Cudd_IsConstant(bFunc) ); //printf( "Creating init %d\n", i ); // create partition p->pParts[i] = ABC_CALLOC( Llb_Prt_t, 1 ); p->pParts[i]->iPart = i; p->pParts[i]->bFunc = bFunc; Cudd_Ref( bFunc ); p->pParts[i]->vVars = Vec_IntAlloc( 8 ); // add support dependencies nSuppSize = 0; Extra_SupportArray( p->dd, bFunc, p->pSupp ); for ( k = 0; k < p->nVars; k++ ) { nSuppSize += p->pSupp[k]; if ( p->pSupp[k] && Vec_IntEntry(p->vVars2Q, k) ) Llb_Nonlin4AddPair( p, i, k ); } p->nSuppMax = Abc_MaxInt( p->nSuppMax, nSuppSize ); } /**Function************************************************************* Synopsis [Checks that each var appears in at least one partition.] Description [] SideEffects [] SeeAlso [] **********************************************************************/ void Llb_Nonlin4CheckVars( Llb_Mgr_t * p ) { Llb_Var_t * pVar; int i; Llb_MgrForEachVar( p, pVar, i ) assert( Vec_IntSize(pVar->vParts) > 1 ); } /**Function************************************************************* Synopsis [Find next partition to quantify] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_Nonlin4NextPartitions( Llb_Mgr_t * p, Llb_Prt_t ** ppPart1, Llb_Prt_t ** ppPart2 ) { Llb_Var_t * pVar, * pVarBest = NULL; Llb_Prt_t * pPart, * pPart1Best = NULL, * pPart2Best = NULL; int i; Llb_Nonlin4CheckVars( p ); // find variable with minimum score Llb_MgrForEachVar( p, pVar, i ) { if ( p->nSizeMax && pVar->nScore > p->nSizeMax ) continue; // if ( pVarBest == NULL || Vec_IntSize(pVarBest->vParts) * pVarBest->nScore > Vec_IntSize(pVar->vParts) * pVar->nScore ) if ( pVarBest == NULL || pVarBest->nScore > pVar->nScore ) pVarBest = pVar; // printf( "%d ", pVar->nScore ); } //printf( "\n" ); if ( pVarBest == NULL ) return 0; // find two partitions with minimum size Llb_VarForEachPart( p, pVarBest, pPart, i ) { if ( pPart1Best == NULL ) pPart1Best = pPart; else if ( pPart2Best == NULL ) pPart2Best = pPart; else if ( pPart1Best->nSize > pPart->nSize || pPart2Best->nSize > pPart->nSize ) { if ( pPart1Best->nSize > pPart2Best->nSize ) pPart1Best = pPart; else pPart2Best = pPart; } } //printf( "Selecting %d and parts %d and %d\n", pVarBest->iVar, pPart1Best->nSize, pPart2Best->nSize ); //Extra_bddPrintSupport( p->dd, pPart1Best->bFunc ); printf( "\n" ); //Extra_bddPrintSupport( p->dd, pPart2Best->bFunc ); printf( "\n" ); *ppPart1 = pPart1Best; *ppPart2 = pPart2Best; return 1; } /**Function************************************************************* Synopsis [Recomputes scores after variable reordering.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4RecomputeScores( Llb_Mgr_t * p ) { Llb_Prt_t * pPart; Llb_Var_t * pVar; int i, k; Llb_MgrForEachPart( p, pPart, i ) pPart->nSize = Cudd_DagSize(pPart->bFunc); Llb_MgrForEachVar( p, pVar, i ) { pVar->nScore = 0; Llb_VarForEachPart( p, pVar, pPart, k ) pVar->nScore += pPart->nSize; } } /**Function************************************************************* Synopsis [Recomputes scores after variable reordering.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4VerifyScores( Llb_Mgr_t * p ) { Llb_Prt_t * pPart; Llb_Var_t * pVar; int i, k, nScore; Llb_MgrForEachPart( p, pPart, i ) assert( pPart->nSize == Cudd_DagSize(pPart->bFunc) ); Llb_MgrForEachVar( p, pVar, i ) { nScore = 0; Llb_VarForEachPart( p, pVar, pPart, k ) nScore += pPart->nSize; assert( nScore == pVar->nScore ); } } /**Function************************************************************* Synopsis [Starts non-linear quantification scheduling.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Llb_Mgr_t * Llb_Nonlin4Alloc( DdManager * dd, Vec_Ptr_t * vParts, DdNode * bCurrent, Vec_Int_t * vVars2Q, int nSizeMax ) { Llb_Mgr_t * p; DdNode * bFunc; int i; p = ABC_CALLOC( Llb_Mgr_t, 1 ); p->dd = dd; p->nSizeMax = nSizeMax; p->vVars2Q = vVars2Q; p->nVars = Cudd_ReadSize(dd); p->iPartFree = Vec_PtrSize(vParts); p->pVars = ABC_CALLOC( Llb_Var_t *, p->nVars ); p->pParts = ABC_CALLOC( Llb_Prt_t *, 2 * p->iPartFree + 2 ); p->pSupp = ABC_ALLOC( int, Cudd_ReadSize(dd) ); // add pairs (refs are consumed inside) Vec_PtrForEachEntry( DdNode *, vParts, bFunc, i ) Llb_Nonlin4AddPartition( p, i, bFunc ); // add partition if ( bCurrent ) Llb_Nonlin4AddPartition( p, p->iPartFree++, bCurrent ); return p; } /**Function************************************************************* Synopsis [Stops non-linear quantification scheduling.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_Nonlin4Free( Llb_Mgr_t * p ) { Llb_Prt_t * pPart; Llb_Var_t * pVar; int i; Llb_MgrForEachVar( p, pVar, i ) Llb_Nonlin4RemoveVar( p, pVar ); Llb_MgrForEachPart( p, pPart, i ) Llb_Nonlin4RemovePart( p, pPart ); ABC_FREE( p->pVars ); ABC_FREE( p->pParts ); ABC_FREE( p->pSupp ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_Nonlin4Image( DdManager * dd, Vec_Ptr_t * vParts, DdNode * bCurrent, Vec_Int_t * vVars2Q ) { Llb_Prt_t * pPart, * pPart1, * pPart2; Llb_Mgr_t * p; DdNode * bFunc, * bTemp; int i, nReorders; // start the manager p = Llb_Nonlin4Alloc( dd, vParts, bCurrent, vVars2Q, 0 ); // remove singles Llb_MgrForEachPart( p, pPart, i ) if ( Llb_Nonlin4HasSingletonVars(p, pPart) ) Llb_Nonlin4Quantify1( p, pPart ); // compute scores Llb_Nonlin4RecomputeScores( p ); // iteratively quantify variables while ( Llb_Nonlin4NextPartitions(p, &pPart1, &pPart2) ) { nReorders = Cudd_ReadReorderings(dd); if ( !Llb_Nonlin4Quantify2( p, pPart1, pPart2 ) ) { Llb_Nonlin4Free( p ); return NULL; } if ( nReorders < Cudd_ReadReorderings(dd) ) Llb_Nonlin4RecomputeScores( p ); // else // Llb_Nonlin4VerifyScores( p ); } // load partitions bFunc = Cudd_ReadOne(p->dd); Cudd_Ref( bFunc ); Llb_MgrForEachPart( p, pPart, i ) { bFunc = Cudd_bddAnd( p->dd, bTemp = bFunc, pPart->bFunc ); Cudd_Ref( bFunc ); Cudd_RecursiveDeref( p->dd, bTemp ); } // nSuppMax = p->nSuppMax; Llb_Nonlin4Free( p ); //printf( "\n" ); // return Cudd_Deref( bFunc ); return bFunc; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Llb_Nonlin4Group( DdManager * dd, Vec_Ptr_t * vParts, Vec_Int_t * vVars2Q, int nSizeMax ) { Vec_Ptr_t * vGroups; Llb_Prt_t * pPart, * pPart1, * pPart2; Llb_Mgr_t * p; int i, nReorders;//, clk = Abc_Clock(); // start the manager p = Llb_Nonlin4Alloc( dd, vParts, NULL, vVars2Q, nSizeMax ); // remove singles Llb_MgrForEachPart( p, pPart, i ) if ( Llb_Nonlin4HasSingletonVars(p, pPart) ) Llb_Nonlin4Quantify1( p, pPart ); // compute scores Llb_Nonlin4RecomputeScores( p ); // iteratively quantify variables while ( Llb_Nonlin4NextPartitions(p, &pPart1, &pPart2) ) { nReorders = Cudd_ReadReorderings(dd); if ( !Llb_Nonlin4Quantify2( p, pPart1, pPart2 ) ) { Llb_Nonlin4Free( p ); return NULL; } if ( nReorders < Cudd_ReadReorderings(dd) ) Llb_Nonlin4RecomputeScores( p ); // else // Llb_Nonlin4VerifyScores( p ); } // load partitions vGroups = Vec_PtrAlloc( 1000 ); Llb_MgrForEachPart( p, pPart, i ) { //printf( "Iteration %d ", pPart->iPart ); if ( Cudd_IsConstant(pPart->bFunc) ) { //printf( "Constant\n" ); assert( !Cudd_IsComplement(pPart->bFunc) ); continue; } //printf( "\n" ); Vec_PtrPush( vGroups, pPart->bFunc ); Cudd_Ref( pPart->bFunc ); //printf( "Part %d ", pPart->iPart ); //Extra_bddPrintSupport( p->dd, pPart->bFunc ); printf( "\n" ); } Llb_Nonlin4Free( p ); //Abc_PrintTime( 1, "Reparametrization time", Abc_Clock() - clk ); return vGroups; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END