/**CFile**************************************************************** FileName [llb2Image.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [BDD based reachability.] Synopsis [Computes image using partitioned structure.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: llb2Image.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "llbInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// extern Vec_Ptr_t * Llb_ManCutNodes( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper ); extern Vec_Ptr_t * Llb_ManCutRange( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computes supports of the partitions.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Llb_ImgSupports( Aig_Man_t * p, Vec_Ptr_t * vDdMans, Vec_Int_t * vStart, Vec_Int_t * vStop, int fAddPis, int fVerbose ) { Vec_Ptr_t * vSupps; Vec_Int_t * vOne; Aig_Obj_t * pObj; DdManager * dd; DdNode * bSupp, * bTemp; int i, Entry, nSize; nSize = Cudd_ReadSize( (DdManager *)Vec_PtrEntry( vDdMans, 0 ) ); vSupps = Vec_PtrAlloc( 100 ); // create initial vOne = Vec_IntStart( nSize ); Vec_IntForEachEntry( vStart, Entry, i ) Vec_IntWriteEntry( vOne, Entry, 1 ); Vec_PtrPush( vSupps, vOne ); // create intermediate Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i ) { vOne = Vec_IntStart( nSize ); bSupp = Cudd_Support( dd, dd->bFunc ); Cudd_Ref( bSupp ); for ( bTemp = bSupp; bTemp != Cudd_ReadOne(dd); bTemp = cuddT(bTemp) ) Vec_IntWriteEntry( vOne, bTemp->index, 1 ); Cudd_RecursiveDeref( dd, bSupp ); Vec_PtrPush( vSupps, vOne ); } // create final vOne = Vec_IntStart( nSize ); Vec_IntForEachEntry( vStop, Entry, i ) Vec_IntWriteEntry( vOne, Entry, 1 ); if ( fAddPis ) Saig_ManForEachPi( p, pObj, i ) Vec_IntWriteEntry( vOne, Aig_ObjId(pObj), 1 ); Vec_PtrPush( vSupps, vOne ); // print supports assert( nSize == Aig_ManObjNumMax(p) ); if ( !fVerbose ) return vSupps; Aig_ManForEachObj( p, pObj, i ) { int k, Counter = 0; Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k ) Counter += Vec_IntEntry(vOne, i); if ( Counter == 0 ) continue; printf( "Obj = %4d : ", i ); if ( Saig_ObjIsPi(p,pObj) ) printf( "pi " ); else if ( Saig_ObjIsLo(p,pObj) ) printf( "lo " ); else if ( Saig_ObjIsLi(p,pObj) ) printf( "li " ); else if ( Aig_ObjIsNode(pObj) ) printf( "and " ); Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k ) printf( "%d", Vec_IntEntry(vOne, i) ); printf( "\n" ); } return vSupps; } /**Function************************************************************* Synopsis [Computes quantification schedule.] Description [Input array contains supports: 0=starting, ... intermediate... N-1=final. Output arrays contain immediately quantifiable vars (vQuant0) and vars that should be quantified after conjunction (vQuant1).] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_ImgSchedule( Vec_Ptr_t * vSupps, Vec_Ptr_t ** pvQuant0, Vec_Ptr_t ** pvQuant1, int fVerbose ) { Vec_Int_t * vOne; int nVarsAll, Counter, iSupp = -1, Entry, i, k; // start quantification arrays *pvQuant0 = Vec_PtrAlloc( Vec_PtrSize(vSupps) ); *pvQuant1 = Vec_PtrAlloc( Vec_PtrSize(vSupps) ); Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k ) { Vec_PtrPush( *pvQuant0, Vec_IntAlloc(16) ); Vec_PtrPush( *pvQuant1, Vec_IntAlloc(16) ); } // count how many times each var appears nVarsAll = Vec_IntSize( (Vec_Int_t *)Vec_PtrEntry(vSupps, 0) ); for ( i = 0; i < nVarsAll; i++ ) { Counter = 0; Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k ) if ( Vec_IntEntry(vOne, i) ) { iSupp = k; Counter++; } if ( Counter == 0 ) continue; if ( Counter == 1 ) Vec_IntPush( (Vec_Int_t *)Vec_PtrEntry(*pvQuant0, iSupp), i ); else // if ( Counter > 1 ) Vec_IntPush( (Vec_Int_t *)Vec_PtrEntry(*pvQuant1, iSupp), i ); } if ( fVerbose ) for ( i = 0; i < Vec_PtrSize(vSupps); i++ ) { printf( "%2d : Quant0 = ", i ); Vec_IntForEachEntry( (Vec_Int_t *)Vec_PtrEntry(*pvQuant0, i), Entry, k ) printf( "%d ", Entry ); printf( "\n" ); } if ( fVerbose ) for ( i = 0; i < Vec_PtrSize(vSupps); i++ ) { printf( "%2d : Quant1 = ", i ); Vec_IntForEachEntry( (Vec_Int_t *)Vec_PtrEntry(*pvQuant1, i), Entry, k ) printf( "%d ", Entry ); printf( "\n" ); } } /**Function************************************************************* Synopsis [Computes one partition in a separate BDD manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdManager * Llb_ImgPartition( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper, abctime TimeTarget ) { Vec_Ptr_t * vNodes, * vRange; Aig_Obj_t * pObj; DdManager * dd; DdNode * bBdd0, * bBdd1, * bProd, * bRes, * bTemp; int i; dd = Cudd_Init( Aig_ManObjNumMax(p), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); Cudd_AutodynEnable( dd, CUDD_REORDER_SYMM_SIFT ); dd->TimeStop = TimeTarget; Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i ) pObj->pData = Cudd_bddIthVar( dd, Aig_ObjId(pObj) ); vNodes = Llb_ManCutNodes( p, vLower, vUpper ); Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i ) { bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) ); bBdd1 = Cudd_NotCond( (DdNode *)Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) ); // pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 ); Cudd_Ref( (DdNode *)pObj->pData ); // pObj->pData = Extra_bddAndTime( dd, bBdd0, bBdd1, TimeTarget ); pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 ); if ( pObj->pData == NULL ) { Cudd_Quit( dd ); Vec_PtrFree( vNodes ); return NULL; } Cudd_Ref( (DdNode *)pObj->pData ); } vRange = Llb_ManCutRange( p, vLower, vUpper ); bRes = Cudd_ReadOne(dd); Cudd_Ref( bRes ); Vec_PtrForEachEntry( Aig_Obj_t *, vRange, pObj, i ) { assert( Aig_ObjIsNode(pObj) ); bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), (DdNode *)pObj->pData ); Cudd_Ref( bProd ); // bRes = Cudd_bddAnd( dd, bTemp = bRes, bProd ); Cudd_Ref( bRes ); // bRes = Extra_bddAndTime( dd, bTemp = bRes, bProd, TimeTarget ); bRes = Cudd_bddAnd( dd, bTemp = bRes, bProd ); if ( bRes == NULL ) { Cudd_Quit( dd ); Vec_PtrFree( vRange ); Vec_PtrFree( vNodes ); return NULL; } Cudd_Ref( bRes ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bProd ); } Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i ) Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData ); Vec_PtrFree( vRange ); Vec_PtrFree( vNodes ); Cudd_AutodynDisable( dd ); // Cudd_RecursiveDeref( dd, bRes ); // Extra_StopManager( dd ); dd->bFunc = bRes; dd->TimeStop = 0; return dd; } /**Function************************************************************* Synopsis [Derives positive cube composed of nodes IDs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_ImgComputeCube( Aig_Man_t * pAig, Vec_Int_t * vNodeIds, DdManager * dd ) { DdNode * bProd, * bTemp; Aig_Obj_t * pObj; int i; abctime TimeStop; TimeStop = dd->TimeStop; dd->TimeStop = 0; bProd = Cudd_ReadOne(dd); Cudd_Ref( bProd ); Aig_ManForEachObjVec( vNodeIds, pAig, pObj, i ) { bProd = Cudd_bddAnd( dd, bTemp = bProd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)) ); Cudd_Ref( bProd ); Cudd_RecursiveDeref( dd, bTemp ); } Cudd_Deref( bProd ); dd->TimeStop = TimeStop; return bProd; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_ImgQuantifyFirst( Aig_Man_t * pAig, Vec_Ptr_t * vDdMans, Vec_Ptr_t * vQuant0, int fVerbose ) { DdManager * dd; DdNode * bProd, * bRes, * bTemp; int i; abctime clk = Abc_Clock(); Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i ) { // remember unquantified ones assert( dd->bFunc2 == NULL ); dd->bFunc2 = dd->bFunc; Cudd_Ref( dd->bFunc2 ); Cudd_AutodynEnable( dd, CUDD_REORDER_SYMM_SIFT ); bRes = dd->bFunc; if ( fVerbose ) Abc_Print( 1, "Part %2d : Init =%5d. ", i, Cudd_DagSize(bRes) ); bProd = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, i+1), dd ); Cudd_Ref( bProd ); bRes = Cudd_bddExistAbstract( dd, bTemp = bRes, bProd ); Cudd_Ref( bRes ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bProd ); dd->bFunc = bRes; Cudd_AutodynDisable( dd ); if ( fVerbose ) Abc_Print( 1, "Quant =%5d. ", Cudd_DagSize(bRes) ); Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 ); if ( fVerbose ) Abc_Print( 1, "Reo = %5d. ", Cudd_DagSize(bRes) ); Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 ); if ( fVerbose ) Abc_Print( 1, "Reo = %5d. ", Cudd_DagSize(bRes) ); if ( fVerbose ) Abc_Print( 1, "Supp = %3d. ", Cudd_SupportSize(dd, bRes) ); if ( fVerbose ) Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_ImgQuantifyReset( Vec_Ptr_t * vDdMans ) { DdManager * dd; int i; Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i ) { assert( dd->bFunc2 != NULL ); Cudd_RecursiveDeref( dd, dd->bFunc ); dd->bFunc = dd->bFunc2; dd->bFunc2 = NULL; } } /**Function************************************************************* Synopsis [Computes image of the initial set of states.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_ImgComputeImage( Aig_Man_t * pAig, Vec_Ptr_t * vDdMans, DdManager * dd, DdNode * bInit, Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1, Vec_Int_t * vDriRefs, abctime TimeTarget, int fBackward, int fReorder, int fVerbose ) { // int fCheckSupport = 0; DdManager * ddPart; DdNode * bImage, * bGroup, * bCube, * bTemp; int i; abctime clk, clk0 = Abc_Clock(); bImage = bInit; Cudd_Ref( bImage ); if ( fBackward ) { // change polarity bCube = Llb_DriverPhaseCube( pAig, vDriRefs, dd ); Cudd_Ref( bCube ); bImage = Extra_bddChangePolarity( dd, bTemp = bImage, bCube ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); } else { // quantify unique vriables bCube = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, 0), dd ); Cudd_Ref( bCube ); bImage = Cudd_bddExistAbstract( dd, bTemp = bImage, bCube ); if ( bImage == NULL ) { Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); return NULL; } Cudd_Ref( bImage ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); } // perform image computation Vec_PtrForEachEntry( DdManager *, vDdMans, ddPart, i ) { clk = Abc_Clock(); if ( fVerbose ) printf( " %2d : ", i ); // transfer the BDD from the group manager to the main manager bGroup = Cudd_bddTransfer( ddPart, dd, ddPart->bFunc ); if ( bGroup == NULL ) return NULL; Cudd_Ref( bGroup ); if ( fVerbose ) printf( "Pt0 =%6d. Pt1 =%6d. ", Cudd_DagSize(ddPart->bFunc), Cudd_DagSize(bGroup) ); // perform partial product bCube = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant1, i+1), dd ); Cudd_Ref( bCube ); // bImage = Cudd_bddAndAbstract( dd, bTemp = bImage, bGroup, bCube ); // bImage = Extra_bddAndAbstractTime( dd, bTemp = bImage, bGroup, bCube, TimeTarget ); bImage = Cudd_bddAndAbstract( dd, bTemp = bImage, bGroup, bCube ); if ( bImage == NULL ) { Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); Cudd_RecursiveDeref( dd, bGroup ); return NULL; } Cudd_Ref( bImage ); if ( fVerbose ) printf( "Im0 =%6d. Im1 =%6d. ", Cudd_DagSize(bTemp), Cudd_DagSize(bImage) ); //printf("\n"); Extra_bddPrintSupport(dd, bImage); printf("\n"); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); Cudd_RecursiveDeref( dd, bGroup ); // Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 ); // Abc_Print( 1, "Reo =%6d. ", Cudd_DagSize(bImage) ); if ( fVerbose ) printf( "Supp =%3d. ", Cudd_SupportSize(dd, bImage) ); if ( fVerbose ) Abc_PrintTime( 1, "T", Abc_Clock() - clk ); } if ( !fBackward ) { // change polarity bCube = Llb_DriverPhaseCube( pAig, vDriRefs, dd ); Cudd_Ref( bCube ); bImage = Extra_bddChangePolarity( dd, bTemp = bImage, bCube ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); } else { // quantify unique vriables bCube = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, 0), dd ); Cudd_Ref( bCube ); bImage = Cudd_bddExistAbstract( dd, bTemp = bImage, bCube ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( dd, bTemp ); Cudd_RecursiveDeref( dd, bCube ); } if ( fReorder ) { if ( fVerbose ) Abc_Print( 1, " Reordering... Before =%5d. ", Cudd_DagSize(bImage) ); Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 ); if ( fVerbose ) Abc_Print( 1, "After =%5d. ", Cudd_DagSize(bImage) ); // Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 ); // Abc_Print( 1, "After =%5d. ", Cudd_DagSize(bImage) ); if ( fVerbose ) Abc_PrintTime( 1, "Time", Abc_Clock() - clk0 ); // Abc_Print( 1, "\n" ); } Cudd_Deref( bImage ); return bImage; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END