/**CFile**************************************************************** FileName [fpgaCreate.c] PackageName [MVSIS 1.3: Multi-valued logic synthesis system.] Synopsis [Technology mapping for variable-size-LUT FPGAs.] Author [MVSIS Group] Affiliation [UC Berkeley] Date [Ver. 2.0. Started - August 18, 2004.] Revision [$Id: fpgaCreate.c,v 1.8 2004/09/30 21:18:09 satrajit Exp $] ***********************************************************************/ #include "fpgaInt.h" #include "base/main/main.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static void Fpga_TableCreate( Fpga_Man_t * p ); static void Fpga_TableResize( Fpga_Man_t * p ); static Fpga_Node_t * Fpga_TableLookup( Fpga_Man_t * p, Fpga_Node_t * p1, Fpga_Node_t * p2 ); // hash key for the structural hash table static inline unsigned Fpga_HashKey2( Fpga_Node_t * p0, Fpga_Node_t * p1, int TableSize ) { return (unsigned)(((ABC_PTRUINT_T)(p0) + (ABC_PTRUINT_T)(p1) * 12582917) % TableSize); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Reads parameters of the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fpga_ManReadInputNum( Fpga_Man_t * p ) { return p->nInputs; } int Fpga_ManReadOutputNum( Fpga_Man_t * p ) { return p->nOutputs; } Fpga_Node_t ** Fpga_ManReadInputs ( Fpga_Man_t * p ) { return p->pInputs; } Fpga_Node_t ** Fpga_ManReadOutputs( Fpga_Man_t * p ) { return p->pOutputs; } Fpga_Node_t * Fpga_ManReadConst1 ( Fpga_Man_t * p ) { return p->pConst1; } float * Fpga_ManReadInputArrivals( Fpga_Man_t * p ) { return p->pInputArrivals;} int Fpga_ManReadVerbose( Fpga_Man_t * p ) { return p->fVerbose; } int Fpga_ManReadVarMax( Fpga_Man_t * p ) { return p->pLutLib->LutMax; } float * Fpga_ManReadLutAreas( Fpga_Man_t * p ) { return p->pLutLib->pLutAreas; } Fpga_NodeVec_t* Fpga_ManReadMapping( Fpga_Man_t * p ) { return p->vMapping; } void Fpga_ManSetOutputNames( Fpga_Man_t * p, char ** ppNames ) { p->ppOutputNames = ppNames; } void Fpga_ManSetInputArrivals( Fpga_Man_t * p, float * pArrivals ) { p->pInputArrivals = pArrivals; } void Fpga_ManSetAreaRecovery( Fpga_Man_t * p, int fAreaRecovery ) { p->fAreaRecovery = fAreaRecovery;} void Fpga_ManSetDelayLimit( Fpga_Man_t * p, float DelayLimit ) { p->DelayLimit = DelayLimit; } void Fpga_ManSetAreaLimit( Fpga_Man_t * p, float AreaLimit ) { p->AreaLimit = AreaLimit; } void Fpga_ManSetChoiceNodeNum( Fpga_Man_t * p, int nChoiceNodes ) { p->nChoiceNodes = nChoiceNodes; } void Fpga_ManSetChoiceNum( Fpga_Man_t * p, int nChoices ) { p->nChoices = nChoices; } void Fpga_ManSetVerbose( Fpga_Man_t * p, int fVerbose ) { p->fVerbose = fVerbose; } void Fpga_ManSetSwitching( Fpga_Man_t * p, int fSwitching ) { p->fSwitching = fSwitching; } void Fpga_ManSetLatchPaths( Fpga_Man_t * p, int fLatchPaths ) { p->fLatchPaths = fLatchPaths; } void Fpga_ManSetLatchNum( Fpga_Man_t * p, int nLatches ) { p->nLatches = nLatches; } void Fpga_ManSetDelayTarget( Fpga_Man_t * p, float DelayTarget ) { p->DelayTarget = DelayTarget; } void Fpga_ManSetName( Fpga_Man_t * p, char * pFileName ) { p->pFileName = pFileName; } /**Function************************************************************* Synopsis [Reads the parameters of the LUT library.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fpga_LibReadLutMax( Fpga_LutLib_t * pLib ) { return pLib->LutMax; } /**Function************************************************************* Synopsis [Reads parameters of the mapping node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ char * Fpga_NodeReadData0( Fpga_Node_t * p ) { return p->pData0; } Fpga_Node_t * Fpga_NodeReadData1( Fpga_Node_t * p ) { return p->pLevel; } int Fpga_NodeReadRefs( Fpga_Node_t * p ) { return p->nRefs; } int Fpga_NodeReadNum( Fpga_Node_t * p ) { return p->Num; } int Fpga_NodeReadLevel( Fpga_Node_t * p ) { return Fpga_Regular(p)->Level; } Fpga_Cut_t * Fpga_NodeReadCuts( Fpga_Node_t * p ) { return p->pCuts; } Fpga_Cut_t * Fpga_NodeReadCutBest( Fpga_Node_t * p ) { return p->pCutBest; } Fpga_Node_t * Fpga_NodeReadOne( Fpga_Node_t * p ) { return p->p1; } Fpga_Node_t * Fpga_NodeReadTwo( Fpga_Node_t * p ) { return p->p2; } void Fpga_NodeSetData0( Fpga_Node_t * p, char * pData ) { p->pData0 = pData; } void Fpga_NodeSetData1( Fpga_Node_t * p, Fpga_Node_t * pNode ) { p->pLevel = pNode; } void Fpga_NodeSetNextE( Fpga_Node_t * p, Fpga_Node_t * pNextE ) { p->pNextE = pNextE; } void Fpga_NodeSetRepr( Fpga_Node_t * p, Fpga_Node_t * pRepr ) { p->pRepr = pRepr; } void Fpga_NodeSetSwitching( Fpga_Node_t * p, float Switching ) { p->Switching = Switching; } /**Function************************************************************* Synopsis [Checks the type of the node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fpga_NodeIsConst( Fpga_Node_t * p ) { return (Fpga_Regular(p))->Num == -1; } int Fpga_NodeIsVar( Fpga_Node_t * p ) { return (Fpga_Regular(p))->p1 == NULL && (Fpga_Regular(p))->Num >= 0; } int Fpga_NodeIsAnd( Fpga_Node_t * p ) { return (Fpga_Regular(p))->p1 != NULL; } int Fpga_NodeComparePhase( Fpga_Node_t * p1, Fpga_Node_t * p2 ) { assert( !Fpga_IsComplement(p1) ); assert( !Fpga_IsComplement(p2) ); return p1->fInv ^ p2->fInv; } /**Function************************************************************* Synopsis [Reads parameters from the cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fpga_CutReadLeavesNum( Fpga_Cut_t * p ) { return p->nLeaves; } Fpga_Node_t ** Fpga_CutReadLeaves( Fpga_Cut_t * p ) { return p->ppLeaves; } /**Function************************************************************* Synopsis [Create the mapping manager.] Description [The number of inputs and outputs is assumed to be known is advance. It is much simpler to have them fixed upfront. When it comes to representing the object graph in the form of AIG, the resulting manager is similar to the regular AIG manager, except that it does not use reference counting (and therefore does not have garbage collections). It does have table resizing. The data structure is more flexible to represent additional information needed for mapping.] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Man_t * Fpga_ManCreate( int nInputs, int nOutputs, int fVerbose ) { Fpga_Man_t * p; int i; // start the manager p = ABC_ALLOC( Fpga_Man_t, 1 ); memset( p, 0, sizeof(Fpga_Man_t) ); p->pLutLib = (Fpga_LutLib_t *)Abc_FrameReadLibLut(); p->nVarsMax = p->pLutLib->LutMax; p->fVerbose = fVerbose; p->fAreaRecovery = 1; p->fEpsilon = (float)0.001; Fpga_TableCreate( p ); //if ( p->fVerbose ) // printf( "Node = %d (%d) bytes. Cut = %d bytes.\n", sizeof(Fpga_Node_t), FPGA_NUM_BYTES(sizeof(Fpga_Node_t)), sizeof(Fpga_Cut_t) ); p->mmNodes = Extra_MmFixedStart( FPGA_NUM_BYTES(sizeof(Fpga_Node_t)) ); p->mmCuts = Extra_MmFixedStart( sizeof(Fpga_Cut_t) ); assert( p->nVarsMax > 0 ); // Fpga_MappingSetupTruthTables( p->uTruths ); // make sure the constant node will get index -1 p->nNodes = -1; // create the constant node p->pConst1 = Fpga_NodeCreate( p, NULL, NULL ); p->vNodesAll = Fpga_NodeVecAlloc( 1000 ); p->vMapping = Fpga_NodeVecAlloc( 1000 ); // create the PI nodes p->nInputs = nInputs; p->pInputs = ABC_ALLOC( Fpga_Node_t *, nInputs ); for ( i = 0; i < nInputs; i++ ) p->pInputs[i] = Fpga_NodeCreate( p, NULL, NULL ); // create the place for the output nodes p->nOutputs = nOutputs; p->pOutputs = ABC_ALLOC( Fpga_Node_t *, nOutputs ); memset( p->pOutputs, 0, sizeof(Fpga_Node_t *) * nOutputs ); return p; } /**Function************************************************************* Synopsis [Deallocates the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_ManFree( Fpga_Man_t * p ) { // Fpga_ManStats( p ); // int i; // for ( i = 0; i < p->vNodesAll->nSize; i++ ) // Fpga_NodeVecFree( p->vNodesAll->pArray[i]->vFanouts ); // Fpga_NodeVecFree( p->pConst1->vFanouts ); if ( p->vMapping ) Fpga_NodeVecFree( p->vMapping ); if ( p->vAnds ) Fpga_NodeVecFree( p->vAnds ); if ( p->vNodesAll ) Fpga_NodeVecFree( p->vNodesAll ); Extra_MmFixedStop( p->mmNodes ); Extra_MmFixedStop( p->mmCuts ); ABC_FREE( p->ppOutputNames ); ABC_FREE( p->pInputArrivals ); ABC_FREE( p->pInputs ); ABC_FREE( p->pOutputs ); ABC_FREE( p->pBins ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Prints runtime statistics of the mapping manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_ManPrintTimeStats( Fpga_Man_t * p ) { // extern char * pNetName; // extern int TotalLuts; // FILE * pTable; /* pTable = fopen( "stats.txt", "a+" ); fprintf( pTable, "%s ", pNetName ); fprintf( pTable, "%.0f ", p->fRequiredGlo ); // fprintf( pTable, "%.0f ", p->fAreaGlo );//+ (float)nOutputInvs ); fprintf( pTable, "%.0f ", (float)TotalLuts ); fprintf( pTable, "%4.2f\n", (float)(p->timeTotal-p->timeToMap)/(float)(CLOCKS_PER_SEC) ); fclose( pTable ); */ // printf( "N-canonical = %d. Matchings = %d. ", p->nCanons, p->nMatches ); // printf( "Choice nodes = %d. Choices = %d.\n", p->nChoiceNodes, p->nChoices ); ABC_PRT( "ToMap", p->timeToMap ); ABC_PRT( "Cuts ", p->timeCuts ); ABC_PRT( "Match", p->timeMatch ); ABC_PRT( "Area ", p->timeRecover ); ABC_PRT( "ToNet", p->timeToNet ); ABC_PRT( "TOTAL", p->timeTotal ); if ( p->time1 ) { ABC_PRT( "time1", p->time1 ); } if ( p->time2 ) { ABC_PRT( "time2", p->time2 ); } } /**Function************************************************************* Synopsis [Creates a new node.] Description [This procedure should be called to create the constant node and the PI nodes first.] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_NodeCreate( Fpga_Man_t * p, Fpga_Node_t * p1, Fpga_Node_t * p2 ) { Fpga_Node_t * pNode; // create the node pNode = (Fpga_Node_t *)Extra_MmFixedEntryFetch( p->mmNodes ); memset( pNode, 0, sizeof(Fpga_Node_t) ); // set very large required time pNode->tRequired = FPGA_FLOAT_LARGE; pNode->aEstFanouts = -1; pNode->p1 = p1; pNode->p2 = p2; // set the number of this node pNode->Num = p->nNodes++; // place to store the fanouts // pNode->vFanouts = Fpga_NodeVecAlloc( 5 ); // store this node in the internal array if ( pNode->Num >= 0 ) Fpga_NodeVecPush( p->vNodesAll, pNode ); else pNode->fInv = 1; // set the level of this node if ( p1 ) { #ifdef FPGA_ALLOCATE_FANOUT // create the fanout info Fpga_NodeAddFaninFanout( Fpga_Regular(p1), pNode ); Fpga_NodeAddFaninFanout( Fpga_Regular(p2), pNode ); #endif // compute the level pNode->Level = 1 + FPGA_MAX(Fpga_Regular(p1)->Level, Fpga_Regular(p2)->Level); pNode->fInv = Fpga_NodeIsSimComplement(p1) & Fpga_NodeIsSimComplement(p2); } // reference the inputs if ( p1 ) Fpga_NodeRef(p1); if ( p2 ) Fpga_NodeRef(p2); return pNode; } /**Function************************************************************* Synopsis [Create the unique table of AND gates.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_TableCreate( Fpga_Man_t * pMan ) { assert( pMan->pBins == NULL ); pMan->nBins = Abc_PrimeCudd(50000); pMan->pBins = ABC_ALLOC( Fpga_Node_t *, pMan->nBins ); memset( pMan->pBins, 0, sizeof(Fpga_Node_t *) * pMan->nBins ); pMan->nNodes = 0; } /**Function************************************************************* Synopsis [Looks up the AND2 node in the unique table.] Description [This procedure implements one-level hashing. All the nodes are hashed by their children. If the node with the same children was already created, it is returned by the call to this procedure. If it does not exist, this procedure creates a new node with these children. ] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_TableLookup( Fpga_Man_t * pMan, Fpga_Node_t * p1, Fpga_Node_t * p2 ) { Fpga_Node_t * pEnt; unsigned Key; if ( p1 == p2 ) return p1; if ( p1 == Fpga_Not(p2) ) return Fpga_Not(pMan->pConst1); if ( Fpga_NodeIsConst(p1) ) { if ( p1 == pMan->pConst1 ) return p2; return Fpga_Not(pMan->pConst1); } if ( Fpga_NodeIsConst(p2) ) { if ( p2 == pMan->pConst1 ) return p1; return Fpga_Not(pMan->pConst1); } if ( Fpga_Regular(p1)->Num > Fpga_Regular(p2)->Num ) pEnt = p1, p1 = p2, p2 = pEnt; Key = Fpga_HashKey2( p1, p2, pMan->nBins ); for ( pEnt = pMan->pBins[Key]; pEnt; pEnt = pEnt->pNext ) if ( pEnt->p1 == p1 && pEnt->p2 == p2 ) return pEnt; // resize the table if ( pMan->nNodes >= 2 * pMan->nBins ) { Fpga_TableResize( pMan ); Key = Fpga_HashKey2( p1, p2, pMan->nBins ); } // create the new node pEnt = Fpga_NodeCreate( pMan, p1, p2 ); // add the node to the corresponding linked list in the table pEnt->pNext = pMan->pBins[Key]; pMan->pBins[Key] = pEnt; return pEnt; } /**Function************************************************************* Synopsis [Resizes the table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_TableResize( Fpga_Man_t * pMan ) { Fpga_Node_t ** pBinsNew; Fpga_Node_t * pEnt, * pEnt2; int nBinsNew, Counter, i; clock_t clk; unsigned Key; clk = clock(); // get the new table size nBinsNew = Abc_PrimeCudd(2 * pMan->nBins); // allocate a new array pBinsNew = ABC_ALLOC( Fpga_Node_t *, nBinsNew ); memset( pBinsNew, 0, sizeof(Fpga_Node_t *) * nBinsNew ); // rehash the entries from the old table Counter = 0; for ( i = 0; i < pMan->nBins; i++ ) for ( pEnt = pMan->pBins[i], pEnt2 = pEnt? pEnt->pNext: NULL; pEnt; pEnt = pEnt2, pEnt2 = pEnt? pEnt->pNext: NULL ) { Key = Fpga_HashKey2( pEnt->p1, pEnt->p2, nBinsNew ); pEnt->pNext = pBinsNew[Key]; pBinsNew[Key] = pEnt; Counter++; } assert( Counter == pMan->nNodes - pMan->nInputs ); if ( pMan->fVerbose ) { // printf( "Increasing the unique table size from %6d to %6d. ", pMan->nBins, nBinsNew ); // ABC_PRT( "Time", clock() - clk ); } // replace the table and the parameters ABC_FREE( pMan->pBins ); pMan->pBins = pBinsNew; pMan->nBins = nBinsNew; } /**Function************************************************************* Synopsis [Elementary AND operation on the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_NodeAnd( Fpga_Man_t * p, Fpga_Node_t * p1, Fpga_Node_t * p2 ) { Fpga_Node_t * pNode; pNode = Fpga_TableLookup( p, p1, p2 ); return pNode; } /**Function************************************************************* Synopsis [Elementary OR operation on the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_NodeOr( Fpga_Man_t * p, Fpga_Node_t * p1, Fpga_Node_t * p2 ) { Fpga_Node_t * pNode; pNode = Fpga_Not( Fpga_TableLookup( p, Fpga_Not(p1), Fpga_Not(p2) ) ); return pNode; } /**Function************************************************************* Synopsis [Elementary EXOR operation on the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_NodeExor( Fpga_Man_t * p, Fpga_Node_t * p1, Fpga_Node_t * p2 ) { return Fpga_NodeMux( p, p1, Fpga_Not(p2), p2 ); } /**Function************************************************************* Synopsis [Elementary MUX operation on the AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Fpga_Node_t * Fpga_NodeMux( Fpga_Man_t * p, Fpga_Node_t * pC, Fpga_Node_t * pT, Fpga_Node_t * pE ) { Fpga_Node_t * pAnd1, * pAnd2, * pRes; pAnd1 = Fpga_TableLookup( p, pC, pT ); pAnd2 = Fpga_TableLookup( p, Fpga_Not(pC), pE ); pRes = Fpga_NodeOr( p, pAnd1, pAnd2 ); return pRes; } /**Function************************************************************* Synopsis [Sets the node to be equivalent to the given one.] Description [This procedure is a work-around for the equivalence check. Does not verify the equivalence. Use at the user's risk.] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_NodeSetChoice( Fpga_Man_t * pMan, Fpga_Node_t * pNodeOld, Fpga_Node_t * pNodeNew ) { pNodeNew->pNextE = pNodeOld->pNextE; pNodeOld->pNextE = pNodeNew; pNodeNew->pRepr = pNodeOld; } /**Function************************************************************* Synopsis [Prints some interesting stats.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Fpga_ManStats( Fpga_Man_t * p ) { FILE * pTable; pTable = fopen( "stats.txt", "a+" ); fprintf( pTable, "%s ", p->pFileName ); fprintf( pTable, "%4d ", p->nInputs - p->nLatches ); fprintf( pTable, "%4d ", p->nOutputs - p->nLatches ); fprintf( pTable, "%4d ", p->nLatches ); fprintf( pTable, "%7d ", p->vAnds->nSize ); fprintf( pTable, "%7d ", Fpga_CutCountAll(p) ); fprintf( pTable, "%2d\n", (int)p->fRequiredGlo ); fclose( pTable ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END