{-| Module : Z.Data.Vector.FlatIntSet Description : Fast int set based on sorted vector Copyright : (c) Dong Han, 2017-2019 (c) Tao He, 2018-2019 License : BSD Maintainer : winterland1989@gmail.com Stability : experimental Portability : non-portable This module provides a simple int set based on sorted vector and binary search. It's particularly suitable for small sized value collections such as deserializing intermediate representation. But can also used in various place where insertion and deletion is rare but require fast elem. -} module Z.Data.Vector.FlatIntSet ( -- * FlatIntSet backed by sorted vector FlatIntSet, sortedValues, size, null, empty, map' , pack, packN, packR, packRN , unpack, unpackR, packVector, packVectorR , elem , delete , insert , merge -- * binary & linear search on vectors , binarySearch ) where import Control.DeepSeq import Control.Monad import Control.Monad.ST import qualified Data.Semigroup as Semigroup import qualified Data.Monoid as Monoid import qualified Data.Primitive.PrimArray as A import qualified Z.Data.Vector.Base as V import qualified Z.Data.Vector.Sort as V import qualified Z.Data.Text.ShowT as T import Data.Bits (shiftR) import Data.Data import Prelude hiding (elem, null) import Test.QuickCheck.Arbitrary (Arbitrary(..), CoArbitrary(..)) -------------------------------------------------------------------------------- newtype FlatIntSet = FlatIntSet { sortedValues :: V.PrimVector Int } deriving (Show, Eq, Ord, Typeable) instance T.ShowT FlatIntSet where {-# INLINE toTextBuilder #-} toTextBuilder p (FlatIntSet vec) = T.parenWhen (p > 10) $ do T.unsafeFromBuilder "FlatIntSet {" T.intercalateVec T.comma (T.toTextBuilder 0) vec T.char7 '}' instance Semigroup.Semigroup FlatIntSet where {-# INLINE (<>) #-} (<>) = merge instance Monoid.Monoid FlatIntSet where {-# INLINE mappend #-} mappend = merge {-# INLINE mempty #-} mempty = empty instance NFData FlatIntSet where {-# INLINE rnf #-} rnf (FlatIntSet vs) = rnf vs instance Arbitrary FlatIntSet where arbitrary = pack <$> arbitrary shrink v = pack <$> shrink (unpack v) instance CoArbitrary FlatIntSet where coarbitrary = coarbitrary . unpack size :: FlatIntSet -> Int {-# INLINE size #-} size = V.length . sortedValues null :: FlatIntSet -> Bool {-# INLINE null #-} null = V.null . sortedValues -- | Mapping values of within a set, the result size may change if there're duplicated values -- after mapping. map' :: (Int -> Int) -> FlatIntSet -> FlatIntSet {-# INLINE map' #-} map' f (FlatIntSet vs) = packVector (V.map' f vs) -- | /O(1)/ empty flat set. empty :: FlatIntSet {-# INLINE empty #-} empty = FlatIntSet V.empty -- | /O(N*logN)/ Pack list of values, on duplication prefer left one. pack :: [Int] -> FlatIntSet {-# INLINE pack #-} pack vs = FlatIntSet (V.mergeDupAdjacentLeft (==) (V.mergeSort (V.pack vs))) -- | /O(N*logN)/ Pack list of values with suggested size, on duplication prefer left one. packN :: Int -> [Int] -> FlatIntSet {-# INLINE packN #-} packN n vs = FlatIntSet (V.mergeDupAdjacentLeft (==) (V.mergeSort (V.packN n vs))) -- | /O(N*logN)/ Pack list of values, on duplication prefer right one. packR :: [Int] -> FlatIntSet {-# INLINE packR #-} packR vs = FlatIntSet (V.mergeDupAdjacentRight (==) (V.mergeSort (V.pack vs))) -- | /O(N*logN)/ Pack list of values with suggested size, on duplication prefer right one. packRN :: Int -> [Int] -> FlatIntSet {-# INLINE packRN #-} packRN n vs = FlatIntSet (V.mergeDupAdjacentRight (==) (V.mergeSort (V.packN n vs))) -- | /O(N)/ Unpack a set of values to a list s in ascending order. -- -- This function works with @foldr/build@ fusion in base. unpack :: FlatIntSet -> [Int] {-# INLINE unpack #-} unpack = V.unpack . sortedValues -- | /O(N)/ Unpack a set of values to a list s in descending order. -- -- This function works with @foldr/build@ fusion in base. unpackR :: FlatIntSet -> [Int] {-# INLINE unpackR #-} unpackR = V.unpackR . sortedValues -- | /O(N*logN)/ Pack vector of values, on duplication prefer left one. packVector :: V.PrimVector Int -> FlatIntSet {-# INLINE packVector #-} packVector vs = FlatIntSet (V.mergeDupAdjacentLeft (==) (V.mergeSort vs)) -- | /O(N*logN)/ Pack vector of values, on duplication prefer right one. packVectorR :: V.PrimVector Int -> FlatIntSet {-# INLINE packVectorR #-} packVectorR vs = FlatIntSet (V.mergeDupAdjacentRight (==) (V.mergeSort vs)) -- | /O(logN)/ Binary search on flat set. elem :: Int -> FlatIntSet -> Bool {-# INLINE elem #-} elem v (FlatIntSet vec) = case binarySearch vec v of Left _ -> False _ -> True -- | /O(N)/ Insert new value into set. insert :: Int -> FlatIntSet -> FlatIntSet {-# INLINE insert #-} insert v m@(FlatIntSet vec@(V.PrimVector arr s l)) = case binarySearch vec v of Left i -> FlatIntSet (V.create (l+1) (\ marr -> do when (i>s) $ A.copyPrimArray marr 0 arr s (i-s) A.writePrimArray marr i v when (i<(s+l)) $ A.copyPrimArray marr (i+1) arr i (s+l-i))) Right _ -> m -- | /O(N)/ Delete a value. delete :: Int -> FlatIntSet -> FlatIntSet {-# INLINE delete #-} delete v m@(FlatIntSet vec@(V.PrimVector arr s l)) = case binarySearch vec v of Left _ -> m Right i -> FlatIntSet $ V.create (l-1) (\ marr -> do when (i>s) $ A.copyPrimArray marr 0 arr s (i-s) let !end = s+l !j = i+1 when (end > j) $ A.copyPrimArray marr 0 arr j (end-j)) -- | /O(n+m)/ Merge two 'FlatIntSet', prefer right value on value duplication. merge :: FlatIntSet -> FlatIntSet -> FlatIntSet {-# INLINE merge #-} merge fmL@(FlatIntSet (V.PrimVector arrL sL lL)) fmR@(FlatIntSet (V.PrimVector arrR sR lR)) | null fmL = fmR | null fmR = fmL | otherwise = FlatIntSet (V.createN (lL+lR) (go sL sR 0)) where endL = sL + lL endR = sR + lR go :: Int -> Int -> Int -> A.MutablePrimArray s Int -> ST s Int go !i !j !k marr | i >= endL = do A.copyPrimArray marr k arrR j (lR-j) return $! k+lR-j | j >= endR = do A.copyPrimArray marr k arrL i (lL-i) return $! k+lL-i | otherwise = do let !vL = arrL `A.indexPrimArray` i let !vR = arrR `A.indexPrimArray` j case vL `compare` vR of LT -> do A.writePrimArray marr k vL go (i+1) j (k+1) marr EQ -> do A.writePrimArray marr k vR go (i+1) (j+1) (k+1) marr _ -> do A.writePrimArray marr k vR go i (j+1) (k+1) marr -------------------------------------------------------------------------------- -- | Find the value's index in the vector slice, if value exists return 'Right', -- otherwise 'Left', i.e. the insert index -- -- This function only works on ascending sorted vectors. binarySearch :: V.PrimVector Int -> Int -> Either Int Int {-# INLINABLE binarySearch #-} binarySearch (V.PrimVector _ _ 0) _ = Left 0 binarySearch (V.PrimVector arr s0 l) !v' = go s0 (s0+l-1) where go !s !e | s == e = let v = arr `A.indexPrimArray` s in case v' `compare` v of LT -> Left s GT -> let !s' = s+1 in Left s' _ -> Right s | s > e = Left s | otherwise = let !mid = (s+e) `shiftR` 1 v = arr `A.indexPrimArray` mid in case v' `compare` v of LT -> go s (mid-1) GT -> go (mid+1) e _ -> Right mid