{-# LANGUAGE BangPatterns, UnboxedTuples, TypeFamilies, PatternGuards, MagicHash, CPP, TupleSections, NamedFieldPuns, FlexibleInstances #-} {-# OPTIONS -funbox-strict-fields #-} module Data.TrieMap.OrdMap () where import Data.TrieMap.TrieKey import Data.TrieMap.Sized import Data.TrieMap.Modifiers import Control.Applicative (Applicative(..), (<$>)) import Control.Monad hiding (join) import Data.Foldable import Data.Monoid import Prelude hiding (lookup, foldr, foldl, foldr1, foldl1, map) #define DELTA 5 #define RATIO 2 data Path k a = Root | LeftBin k a !(Path k a) !(SNode k a) | RightBin k a !(SNode k a) !(Path k a) data Node k a = Tip | Bin k a !(SNode k a) !(SNode k a) data SNode k a = SNode{sz :: !Int, count :: !Int, node :: Node k a} #define TIP SNode{node=Tip} #define BIN(args) SNode{node=Bin args} instance Sized a => Sized (Node k a) where getSize# m = unbox $ case m of Tip -> 0 Bin _ a l r -> getSize a + getSize l + getSize r instance Sized (SNode k a) where getSize# SNode{sz} = unbox sz nCount :: Node k a -> Int nCount Tip = 0 nCount (Bin _ _ l r) = 1 + count l + count r sNode :: Sized a => Node k a -> SNode k a sNode !n = SNode (getSize n) (nCount n) n tip :: SNode k a tip = SNode 0 0 Tip -- | @'TrieMap' ('Ordered' k) a@ is based on "Data.Map". instance Ord k => TrieKey (Ordered k) where newtype TrieMap (Ordered k) a = OrdMap (SNode k a) data Hole (Ordered k) a = Empty k !(Path k a) | Full k !(Path k a) !(SNode k a) !(SNode k a) emptyM = OrdMap tip singletonM (Ord k) a = OrdMap (singleton k a) lookupM (Ord k) (OrdMap m) = lookup k m getSimpleM (OrdMap m) = case m of TIP -> Null BIN(_ a TIP TIP) -> Singleton a _ -> NonSimple sizeM (OrdMap m) = sz m traverseM f (OrdMap m) = OrdMap <$> traverse f m fmapM f (OrdMap m) = OrdMap (map f m) mapMaybeM f (OrdMap m) = OrdMap (mapMaybe f m) mapEitherM f (OrdMap m) = both OrdMap OrdMap (mapEither f) m isSubmapM (<=) (OrdMap m1) (OrdMap m2) = isSubmap (<=) m1 m2 fromAscListM f xs = OrdMap $ fromAscList f [(k, a) | (Ord k, a) <- xs] fromDistAscListM xs = OrdMap $ fromDistinctAscList [(k, a) | (Ord k, a) <- xs] unionM f (OrdMap m1) (OrdMap m2) = OrdMap $ hedgeUnion f (const LT) (const GT) m1 m2 isectM f (OrdMap m1) (OrdMap m2) = OrdMap $ isect f m1 m2 diffM f (OrdMap m1) (OrdMap m2) = OrdMap $ hedgeDiff f (const LT) (const GT) m1 m2 singleHoleM (Ord k) = Empty k Root beforeM (Empty _ path) = OrdMap $ before tip path beforeM (Full _ path l _) = OrdMap $ before l path beforeWithM a (Empty k path) = OrdMap $ before (singleton k a) path beforeWithM a (Full k path l _) = OrdMap $ before (insertMax k a l) path afterM (Empty _ path) = OrdMap $ after tip path afterM (Full _ path _ r) = OrdMap $ after r path afterWithM a (Empty k path) = OrdMap $ after (singleton k a) path afterWithM a (Full k path _ r) = OrdMap $ after (insertMin k a r) path searchMC (Ord k) (OrdMap m) = search k m indexM i (OrdMap m) = indexT Root i m where indexT path i BIN(kx x l r) | i < sl = indexT (LeftBin kx x path r) i l | i < sx = (# i - sl, x, Full kx path l r #) | otherwise = indexT (RightBin kx x l path) (i - sx) r where !sl = getSize l !sx = getSize x + sl indexT _ _ _ = indexFail () extractHoleM (OrdMap m) = extractHole Root m where extractHole path BIN(kx x l r) = extractHole (LeftBin kx x path r) l `mplus` return (x, Full kx path l r) `mplus` extractHole (RightBin kx x l path) r extractHole _ _ = mzero clearM (Empty _ path) = OrdMap $ rebuild tip path clearM (Full _ path l r) = OrdMap $ rebuild (merge l r) path assignM x (Empty k path) = OrdMap $ rebuild (singleton k x) path assignM x (Full k path l r) = OrdMap $ rebuild (join k x l r) path unifierM (Ord k') (Ord k) a = case compare k' k of EQ -> Nothing LT -> Just $ Empty k' (LeftBin k a Root tip) GT -> Just $ Empty k' (RightBin k a tip Root) rebuild :: Sized a => SNode k a -> Path k a -> SNode k a rebuild t Root = t rebuild t (LeftBin kx x path r) = rebuild (balance kx x t r) path rebuild t (RightBin kx x l path) = rebuild (balance kx x l t) path lookup :: Ord k => k -> SNode k a -> Lookup a lookup k = look where look BIN(kx x l r) = case compare k kx of LT -> lookup k l EQ -> some x GT -> lookup k r look _ = none singleton :: Sized a => k -> a -> SNode k a singleton k a = bin k a tip tip traverse :: (Applicative f, Sized b) => (a -> f b) -> SNode k a -> f (SNode k b) traverse _ TIP = pure tip traverse f BIN(k a l r) = balance k <$> f a <*> traverse f l <*> traverse f r instance Foldable (SNode k) where foldMap _ TIP = mempty foldMap f BIN(_ a l r) = foldMap f l `mappend` f a `mappend` foldMap f r foldr _ z TIP = z foldr f z BIN(_ a l r) = foldr f (a `f` foldr f z r) l foldl _ z TIP = z foldl f z BIN(_ a l r) = foldl f (foldl f z l `f` a) r foldr1 _ TIP = foldr1Empty foldr1 f BIN(_ a l TIP) = foldr f a l foldr1 f BIN(_ a l r) = foldr f (a `f` foldr1 f r) l foldl1 _ TIP = foldl1Empty foldl1 f BIN(_ a TIP r) = foldl f a r foldl1 f BIN(_ a l r) = foldl f (foldl1 f l `f` a) r instance Foldable (TrieMap (Ordered k)) where foldMap f (OrdMap m) = foldMap f m foldr f z (OrdMap m) = foldr f z m foldl f z (OrdMap m) = foldl f z m foldl1 f (OrdMap m) = foldl1 f m foldr1 f (OrdMap m) = foldr1 f m map :: (Ord k, Sized b) => (a -> b) -> SNode k a -> SNode k b map f BIN(k a l r) = join k (f a) (map f l) (map f r) map _ _ = tip mapMaybe :: (Ord k, Sized b) => (a -> Maybe b) -> SNode k a -> SNode k b mapMaybe f BIN(k a l r) = joinMaybe k (f a) (mapMaybe f l) (mapMaybe f r) mapMaybe _ _ = tip mapEither :: (Ord k, Sized b, Sized c) => (a -> (# Maybe b, Maybe c #)) -> SNode k a -> (# SNode k b, SNode k c #) mapEither f BIN(k a l r) = (# joinMaybe k aL lL rL, joinMaybe k aR lR rR #) where !(# aL, aR #) = f a; !(# lL, lR #) = mapEither f l; !(# rL, rR #) = mapEither f r mapEither _ _ = (# tip, tip #) splitLookup :: (Ord k, Sized a) => k -> SNode k a -> (SNode k a -> Maybe a -> SNode k a -> r) -> r splitLookup k t cont = search k t (split Nothing) (split . Just) where split v (Empty _ path) = cont (before tip path) v (after tip path) split v (Full _ path l r) = cont (before l path) v (after r path) isSubmap :: (Ord k, Sized a, Sized b) => LEq a b -> LEq (SNode k a) (SNode k b) isSubmap _ TIP _ = True isSubmap _ _ TIP = False isSubmap (<=) BIN(kx x l r) t = splitLookup kx t result where result _ Nothing _ = False result tl (Just y) tr = x <= y && isSubmap (<=) l tl && isSubmap (<=) r tr fromAscList :: (Eq k, Sized a) => (a -> a -> a) -> [(k, a)] -> SNode k a fromAscList f xs = fromDistinctAscList (combineEq xs) where combineEq (x:xs) = combineEq' x xs combineEq [] = [] combineEq' z [] = [z] combineEq' (kz, zz) (x@(kx, xx):xs) | kz == kx = combineEq' (kx, f xx zz) xs | otherwise = (kz,zz):combineEq' x xs fromDistinctAscList :: Sized a => [(k, a)] -> SNode k a fromDistinctAscList xs = build const (length xs) xs where -- 1) use continutations so that we use heap space instead of stack space. -- 2) special case for n==5 to build bushier trees. build c 0 xs' = c tip xs' build c 5 xs' = case xs' of ((k1,x1):(k2,x2):(k3,x3):(k4,x4):(k5,x5):xx) -> c (bin k4 x4 (bin k2 x2 (singleton k1 x1) (singleton k3 x3)) (singleton k5 x5)) xx _ -> error "fromDistinctAscList build" build c n xs' = seq nr $ build (buildR nr c) nl xs' where nl = n `div` 2 nr = n - nl - 1 buildR n c l ((k,x):ys) = build (buildB l k x c) n ys buildR _ _ _ [] = error "fromDistinctAscList buildR []" buildB l k x c r zs = c (bin k x l r) zs hedgeUnion :: (Ord k, Sized a) => (a -> a -> Maybe a) -> (k -> Ordering) -> (k -> Ordering) -> SNode k a -> SNode k a -> SNode k a hedgeUnion _ _ _ t1 TIP = t1 hedgeUnion _ cmplo cmphi TIP BIN(kx x l r) = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeUnion f cmplo cmphi BIN(kx x l r) t2 = joinMaybe kx newx (hedgeUnion f cmplo cmpkx l lt) (hedgeUnion f cmpkx cmphi r gt) where cmpkx k = compare kx k lt = trim cmplo cmpkx t2 (found,gt) = trimLookupLo kx cmphi t2 newx = case found of Nothing -> Just x Just (_,y) -> f x y filterGt :: (Ord k, Sized a) => (k -> Ordering) -> SNode k a -> SNode k a filterGt _ TIP = tip filterGt cmp BIN(kx x l r) = case cmp kx of LT -> join kx x (filterGt cmp l) r GT -> filterGt cmp r EQ -> r filterLt :: (Ord k, Sized a) => (k -> Ordering) -> SNode k a -> SNode k a filterLt _ TIP = tip filterLt cmp BIN(kx x l r) = case cmp kx of LT -> filterLt cmp l GT -> join kx x l (filterLt cmp r) EQ -> l trim :: (k -> Ordering) -> (k -> Ordering) -> SNode k a -> SNode k a trim cmplo cmphi = trimmer where trimmer TIP = tip trimmer t@BIN(kx _ l r) = case (cmplo kx, cmphi kx) of (LT, GT) -> t (LT, _) -> trimmer l _ -> trimmer r trimLookupLo :: Ord k => k -> (k -> Ordering) -> SNode k a -> (Maybe (k,a), SNode k a) trimLookupLo _ _ TIP = (Nothing,tip) trimLookupLo lo cmphi t@BIN(kx x l r) = case compare lo kx of LT -> case cmphi kx of GT -> (option (lookup lo t) Nothing (\ a -> Just (lo, a)), t) _ -> trimLookupLo lo cmphi l GT -> trimLookupLo lo cmphi r EQ -> (Just (kx,x),trim (compare lo) cmphi r) isect :: (Ord k, Sized a, Sized b, Sized c) => (a -> b -> Maybe c) -> SNode k a -> SNode k b -> SNode k c isect f t1@BIN(_ _ _ _) BIN(k2 x2 l2 r2) = splitLookup k2 t1 result where result tl found tr = joinMaybe k2 (found >>= \ x1' -> f x1' x2) (isect f tl l2) (isect f tr r2) isect _ _ _ = tip hedgeDiff :: (Ord k, Sized a) => (a -> b -> Maybe a) -> (k -> Ordering) -> (k -> Ordering) -> SNode k a -> SNode k b -> SNode k a hedgeDiff _ _ _ TIP _ = tip hedgeDiff _ cmplo cmphi BIN(kx x l r) TIP = join kx x (filterGt cmplo l) (filterLt cmphi r) hedgeDiff f cmplo cmphi t BIN(kx x l r) = case found of Nothing -> merge tl tr Just (ky,y) -> case f y x of Nothing -> merge tl tr Just z -> join ky z tl tr where cmpkx k = compare kx k lt = trim cmplo cmpkx t (found,gt) = trimLookupLo kx cmphi t tl = hedgeDiff f cmplo cmpkx lt l tr = hedgeDiff f cmpkx cmphi gt r joinMaybe :: (Ord k, Sized a) => k -> Maybe a -> SNode k a -> SNode k a -> SNode k a joinMaybe kx = maybe merge (join kx) join :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a join kx x TIP r = insertMin kx x r join kx x l TIP = insertMax kx x l join kx x l@(SNode _ sL (Bin ky y ly ry)) r@(SNode _ sR (Bin kz z lz rz)) | DELTA * sL <= sR = balance kz z (join kx x l lz) rz | DELTA * sR <= sL = balance ky y ly (join kx x ry r) | otherwise = bin kx x l r -- insertMin and insertMax don't perform potentially expensive comparisons. insertMax,insertMin :: Sized a => k -> a -> SNode k a -> SNode k a insertMax kx x = insMax where insMax TIP = singleton kx x insMax BIN(ky y l r) = balance ky y l (insMax r) insertMin kx x = insMin where insMin TIP = singleton kx x insMin BIN(ky y l r) = balance ky y (insMin l) r {-------------------------------------------------------------------- [merge l r]: merges two trees. --------------------------------------------------------------------} merge :: Sized a => SNode k a -> SNode k a -> SNode k a merge TIP r = r merge l TIP = l merge l@(SNode _ sL (Bin kx x lx rx)) r@(SNode _ sR (Bin ky y ly ry)) | DELTA * sL <= sR = balance ky y (merge l ly) ry | DELTA * sR <= sL = balance kx x lx (merge rx r) | otherwise = glue l r {-------------------------------------------------------------------- [glue l r]: glues two trees together. Assumes that [l] and [r] are already balanced with respect to each other. --------------------------------------------------------------------} glue :: Sized a => SNode k a -> SNode k a -> SNode k a glue TIP r = r glue l TIP = l glue l r | count l > count r = let !(# f, l' #) = deleteFindMax balance l in f l' r | otherwise = let !(# f, r' #) = deleteFindMin balance r in f l r' deleteFindMin :: Sized a => (k -> a -> x) -> SNode k a -> (# x, SNode k a #) deleteFindMin f t = case t of BIN(k x TIP r) -> (# f k x, r #) BIN(k x l r) -> onSnd (\ l' -> balance k x l' r) (deleteFindMin f) l _ -> (# error "Map.deleteFindMin: can not return the minimal element of an empty fmap", tip #) deleteFindMax :: Sized a => (k -> a -> x) -> SNode k a -> (# x, SNode k a #) deleteFindMax f t = case t of BIN(k x l TIP) -> (# f k x, l #) BIN(k x l r) -> onSnd (balance k x l) (deleteFindMax f) r TIP -> (# error "Map.deleteFindMax: can not return the maximal element of an empty fmap", tip #) balance :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a balance k x l r | sR >= (DELTA * sL) = rotateL k x l r | sL >= (DELTA * sR) = rotateR k x l r | otherwise = bin k x l r where !sL = count l !sR = count r -- rotate rotateL :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a rotateL k x l r@BIN(_ _ ly ry) | sL < (RATIO * sR) = singleL k x l r | otherwise = doubleL k x l r where !sL = count ly !sR = count ry rotateL k x l TIP = insertMax k x l rotateR :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a rotateR k x l@BIN(_ _ ly ry) r | sR < (RATIO * sL) = singleR k x l r | otherwise = doubleR k x l r where !sL = count ly !sR = count ry rotateR k x TIP r = insertMin k x r -- basic rotations singleL, singleR :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a singleL k1 x1 t1 BIN(k2 x2 t2 t3) = bin k2 x2 (bin k1 x1 t1 t2) t3 singleL k1 x1 t1 TIP = bin k1 x1 t1 tip singleR k1 x1 BIN(k2 x2 t1 t2) t3 = bin k2 x2 t1 (bin k1 x1 t2 t3) singleR k1 x1 TIP t2 = bin k1 x1 tip t2 doubleL, doubleR :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a doubleL k1 x1 t1 BIN(k2 x2 BIN(k3 x3 t2 t3) t4) = bin k3 x3 (bin k1 x1 t1 t2) (bin k2 x2 t3 t4) doubleL k1 x1 t1 t2 = singleL k1 x1 t1 t2 doubleR k1 x1 BIN(k2 x2 t1 BIN(k3 x3 t2 t3)) t4 = bin k3 x3 (bin k2 x2 t1 t2) (bin k1 x1 t3 t4) doubleR k1 x1 t1 t2 = singleR k1 x1 t1 t2 bin :: Sized a => k -> a -> SNode k a -> SNode k a -> SNode k a bin k x l r = sNode (Bin k x l r) before :: Sized a => SNode k a -> Path k a -> SNode k a before t (LeftBin _ _ path _) = before t path before t (RightBin k a l path) = before (join k a l t) path before t _ = t after :: Sized a => SNode k a -> Path k a -> SNode k a after t (LeftBin k a path r) = after (join k a t r) path after t (RightBin _ _ _ path) = after t path after t _ = t search :: Ord k => k -> SNode k a -> SearchCont (Hole (Ordered k) a) a r search k t f g = searcher Root t where searcher path TIP = f (Empty k path) searcher path BIN(kx x l r) = case compare k kx of LT -> searcher (LeftBin kx x path r) l EQ -> g x (Full k path l r) GT -> searcher (RightBin kx x l path) r