module Generics.RepLib.Derive (
derive, derive_abstract
) where
import Generics.RepLib.R
import Generics.RepLib.R1
import Language.Haskell.TH hiding (Con)
import qualified Language.Haskell.TH as TH (Con)
import Language.Haskell.TH.Syntax (Quasi(..))
import Data.List (foldl', nub)
import qualified Data.Set as S
import Data.Maybe (catMaybes)
import Data.Type.Equality
import Control.Monad (replicateM, zipWithM, liftM, liftM2, when)
import Control.Monad.Writer (WriterT, MonadWriter(..), runWriterT, lift)
import Control.Arrow ((***), second)
import Control.Applicative ((<$>), Applicative)
import Unsafe.Coerce
#if MIN_VERSION_template_haskell(2,11,0)
import Control.Monad.Fail ( MonadFail )
#endif
repty :: Type -> Exp
repty ty = SigE (VarE (mkName "rep")) ((ConT ''R) `AppT` ty)
rName :: Name -> Name
rName n =
case nameBase n of
"(,,,,,,)" -> mkName ("rTup7")
"(,,,,,)" -> mkName ("rTup6")
"(,,,,)" -> mkName ("rTup5")
"(,,,)" -> mkName ("rTup4")
"(,,)" -> mkName ("rTup3")
"(,)" -> mkName ("rTup2")
c -> mkName ("r" ++ c)
rName1 :: Name -> Name
rName1 n =
case nameBase n of
"(,,,,,,)" -> mkName ("rTup7_1")
"(,,,,,)" -> mkName ("rTup6_1")
"(,,,,)" -> mkName ("rTup5_1")
"(,,,)" -> mkName ("rTup4_1")
"(,,)" -> mkName ("rTup3_1")
"(,)" -> mkName ("rTup2_1")
c -> mkName ("r" ++ c ++ "1")
newtype QN a = QN { unQN :: WriterT (S.Set Int) Q a }
deriving ( Monad, Functor, MonadWriter (S.Set Int)
#if MIN_VERSION_template_haskell(2,11,0)
, MonadFail
#endif
#if MIN_VERSION_template_haskell(2,7,0)
, Applicative
#endif
)
liftQN :: Q a -> QN a
liftQN = QN . lift
runQN :: QN a -> Q (a, S.Set Int)
runQN = runWriterT . unQN
instance Quasi QN where
qNewName s = liftQN $ qNewName s
qReport b s = liftQN $ qReport b s
qRecover = error "qRecover not implemented for QN"
qReify n = liftQN $ qReify n
#if MIN_VERSION_template_haskell(2,7,0)
qReifyInstances n tys = liftQN $ qReifyInstances n tys
#else
qClassInstances n tys = liftQN $ qClassInstances n tys
#endif
qLocation = liftQN qLocation
qRunIO io = liftQN $ qRunIO io
#if MIN_VERSION_template_haskell(2,7,0)
qLookupName ns s = liftQN $ qLookupName ns s
qAddDependentFile fp = liftQN $ qAddDependentFile fp
#endif
#if MIN_VERSION_template_haskell(2,9,0)
qReifyRoles n = liftQN $ qReifyRoles n
qReifyAnnotations al = liftQN $ qReifyAnnotations al
qReifyModule m = liftQN $ qReifyModule m
qAddTopDecls ds = liftQN $ qAddTopDecls ds
qAddModFinalizer q = liftQN $ qAddModFinalizer q
qGetQ = liftQN $ qGetQ
qPutQ a = liftQN $ qPutQ a
#endif
#if MIN_VERSION_template_haskell(2,11,0)
qReifyFixity n = liftQN $ qReifyFixity n
qReifyConStrictness n = liftQN $ qReifyConStrictness n
qIsExtEnabled e = liftQN $ qIsExtEnabled e
qExtsEnabled = liftQN $ qExtsEnabled
#endif
repcon :: TypeInfo ->
ConstrInfo ->
QN Exp
repcon info constr
| null (constrCxt constr) = liftQN [| Just $con |]
| otherwise = gadtCase (typeParams info) constr con
where args = map (return . repty . fieldType) . constrFields $ constr
mtup = foldr (\ t tl -> [| $(t) :+: $(tl) |]) [| MNil |] args
con = [| Con $(remb constr) $(mtup) |]
gadtCase :: [TyVarBndr] -> ConstrInfo -> Q Exp -> QN Exp
gadtCase tyVars constr conQ = do
con <- liftQN [| Just $conQ |]
(m, pat) <- typeRefinements tyVars constr
n <- liftQN [| Nothing |]
return $ CaseE m
[ Match pat (NormalB con) []
, Match WildP (NormalB n) []
]
typeRefinements :: [TyVarBndr] -> ConstrInfo -> QN (Exp, Pat)
typeRefinements tyVars constr =
fmap ((TupE *** TupP) . unzip)
. sequence
. map genRefinement
. extractParamEqualities tyVars
$ constrCxt constr
extractParamEqualities :: [TyVarBndr] -> Cxt -> [(Name, Type)]
extractParamEqualities tyVars = filterWith extractLHSVars
. filterWith extractEq
where extractEq :: Pred -> Maybe (Type, Type)
#if MIN_VERSION_template_haskell(2,10,0)
extractEq (AppT (AppT EqualityT ty1) ty2) = Just (ty1, ty2)
#else
extractEq (EqualP ty1 ty2) = Just (ty1, ty2)
#endif
extractEq _ = Nothing
extractLHSVars (VarT n, t2) | any ((==n) . tyVarBndrName) tyVars = Just (n,t2)
extractLHSVars _ = Nothing
filterWith :: (a -> Maybe b) -> [a] -> [b]
filterWith f = catMaybes . map f
genRefinement :: (Name, Type) -> QN (Exp, Pat)
genRefinement (n, ty) = do
let (con, args) = decomposeTy ty
when (not (null args)) $ tell $ S.singleton (length args)
liftQN $ case args of
#if MIN_VERSION_base(4,7,0)
[] -> do e <- [| testEquality (rep :: R $(varT n)) $(return $ repty ty) |]
#else
[] -> do e <- [| eqT (rep :: R $(varT n)) $(return $ repty ty) |]
#endif
p <- [p| Just Refl |]
return (e,p)
_ -> do e <- [| $(varE (mkName $ "destr" ++ show (length args)))
(rep :: R $(varT n))
(rep :: R $(appUnits con (length args)))
|]
p <- conP (mkName $ "Result" ++ show (length args))
#if MIN_VERSION_base(4,7,0)
[sigP [p| Refl |] [t| $(varT n) :~: $(return ty) |] ]
#else
[sigP [p| Refl |] [t| $(varT n) :=: $(return ty) |] ]
#endif
return (e,p)
decomposeTy :: Type -> (Type, [Type])
decomposeTy (AppT t1 t2) = second (++[t2]) (decomposeTy t1)
decomposeTy t = (t, [])
appUnits :: Type -> Int -> Q Type
appUnits ty n = do
u <- [t| () |]
return $ foldl' AppT ty (replicate n u)
rfrom :: ConstrInfo -> Q Exp
rfrom constr = do
vars <- mapM (const (newName "x")) (constrFields constr)
outvar <- newName "y"
let nm = (simpleName . constrName $ constr)
let outpat :: Pat
outpat = ConP nm (map VarP vars)
outbod :: Exp
outbod = foldr (\v tl -> (ConE (mkName (":*:"))) `AppE` (VarE v) `AppE` tl)
(ConE 'Nil) vars
success = Match outpat (NormalB ((ConE 'Just) `AppE` outbod)) []
outcase x = if isOnlyConstr constr
then CaseE x [success]
else CaseE x
[success, Match WildP (NormalB (ConE 'Nothing)) [] ]
return (LamE [VarP outvar] (outcase (VarE outvar)))
rto :: ConstrInfo -> Q Exp
rto constr =
do vars <- mapM (const (newName "x")) (constrFields constr)
let topat = foldr (\v tl -> InfixP (VarP v) (mkName ":*:") tl)
(ConP 'Nil []) vars
tobod = foldl' (\tl v -> tl `AppE` (VarE v))
(ConE (simpleName . constrName $ constr))
vars
return (LamE [topat] tobod)
remb :: ConstrInfo -> Q Exp
remb constr =
[| Emb { name = $(stringName . simpleName . constrName $ constr),
to = $(rto constr),
from = $(rfrom constr),
labels = Nothing,
fixity = Nonfix } |]
repDT :: Name -> [Name] -> Q Exp
repDT nm param =
do str <- stringName nm
let reps = foldr (\p f ->
(ConE (mkName ":+:")) `AppE`
repty (VarT p) `AppE`
f)
(ConE 'MNil) param
[| DT $(return str) $(return reps) |]
data Flag = Abs | Conc
repr :: Flag -> Name -> Q [Dec]
repr f n = do info' <- reify n
case info' of
TyConI d -> do
let dInfo = typeInfo d
paramNames = map tyVarBndrName (typeParams dInfo)
nm = typeName dInfo
constrs = typeConstrs dInfo
baseT <- conT nm
let ty = foldl' (\x p -> x `AppT` (VarT p)) baseT paramNames
(rcons, ks) <- runQN $ mapM (repcon dInfo) constrs
ress <- case f of
Conc -> deriveRess ks
Abs -> return []
body <- case f of
Conc -> [| Data $(repDT nm paramNames)
(catMaybes $(return (ListE rcons))) |]
Abs -> [| Abstract $(repDT nm paramNames) |]
#if MIN_VERSION_template_haskell(2,10,0)
let ctx = map (\p -> AppT (ConT (mkName "Rep")) (VarT p)) paramNames
#else
let ctx = map (\p -> ClassP (mkName "Rep") [VarT p]) paramNames
#endif
let rTypeName :: Name
rTypeName = rName n
rSig :: Dec
rSig = SigD rTypeName (ForallT (map PlainTV paramNames)
ctx ((ConT (mkName "R"))
`AppT` ty))
rType :: Dec
rType = ValD (VarP rTypeName) (NormalB body) []
let inst = InstanceD
#if MIN_VERSION_template_haskell(2,11,0)
Nothing
#endif
ctx
((ConT (mkName "Rep")) `AppT` ty)
[ValD (VarP (mkName "rep")) (NormalB (VarE rTypeName)) []]
return $ ress ++ [rSig, rType, inst]
data CtxParam = CtxParam { cpName :: Name
, cpType :: Type
, cpEqs :: [(Name, Type)]
, cpTyVars :: [Name]
, _cpPayload :: Type
, cpPayloadElts :: [Type]
, cpCtxName :: Name
, cpSat :: Maybe (Name, Name)
}
ctx_params :: TypeInfo ->
Name ->
[ConstrInfo] ->
Q [CtxParam]
ctx_params tyInfo ctxName constrs = mapM (genCtxParam ctxName tyInfo) constrs
genCtxParam :: Name -> TypeInfo -> ConstrInfo -> Q CtxParam
genCtxParam ctxName tyInfo constr
= newName "c" >>= \c -> return (CtxParam c pType eqs tvars payload payloadElts ctxName Nothing)
where allEqs = extractParamEqualities (typeParams tyInfo) (constrCxt constr)
eqs = filter (not . S.null . tyFV . snd) allEqs
tvars = map tyVarBndrName . typeParams $ tyInfo
pType | null eqs = payload
| otherwise = guarded
payloadElts = map ((VarT ctxName `AppT`) . fieldType) . constrFields $ constr
payload = mkTupleT payloadElts
guarded = ForallT vars [] (foldr (AppT . AppT ArrowT) payload proofs)
vars = map PlainTV $ concatMap (S.toList . tyFV . snd) eqs
proofs = map mkProof eqs
mkProof (n, ty) = AppT (AppT (ConT (mkName ":=:")) (VarT n)) ty
mkTupleT :: [Type] -> Type
mkTupleT tys = foldl' AppT (TupleT (length tys)) tys
tyFV :: Type -> S.Set Name
tyFV (ForallT vs _ ty) = tyFV ty `S.difference` (S.fromList . map tyVarBndrName $ vs)
tyFV (VarT n) = S.singleton n
tyFV (ConT _) = S.empty
tyFV (TupleT _) = S.empty
tyFV ArrowT = S.empty
tyFV ListT = S.empty
tyFV (AppT ty1 ty2) = tyFV ty1 `S.union` tyFV ty2
tyFV (SigT ty _) = tyFV ty
repcon1 :: TypeInfo
-> CtxParam
-> ConstrInfo
-> Q Exp
repcon1 info ctxParam constr = do
cs <- replicateM (length . constrFields $ constr) (newName "c")
let conBody = caseE (applyPfs ctxParam)
[ match (tupP . map varP $ cs) (normalB con) [] ]
args = map varE cs
mtup = foldr (\ t tl -> [| $(t) :+: $(tl) |]) [| MNil |] args
con = [| Con $(remb constr) $(mtup) |]
case (null (constrCxt constr)) of
True -> [| Just $conBody |]
_ -> fst <$> (runQN $ gadtCase (typeParams info) constr conBody)
applyPfs :: CtxParam -> Q Exp
applyPfs (CtxParam { cpName = n, cpEqs = eqs }) =
appsE (varE n : replicate (length eqs) [| Refl |])
genSatClass :: CtxParam -> Q (CtxParam, [Dec])
genSatClass ctxParam | null (cpEqs ctxParam) = return (ctxParam, [])
| otherwise = do
satNm <- newName "Sat"
dictNm <- newName "dict"
let ctx = cpCtxName ctxParam
eqs = cpEqs ctxParam
tvs = cpTyVars ctxParam
satClass = ClassD [] satNm (PlainTV ctx : map PlainTV tvs) []
[SigD dictNm (cpType ctxParam)]
satInstHead = foldl' AppT (ConT satNm) (VarT ctx : map tvOrEqType tvs)
tvOrEqType a = case lookup a eqs of
Just t -> t
Nothing -> VarT a
satInst = InstanceD
#if MIN_VERSION_template_haskell(2,11,0)
Nothing
#endif
#if MIN_VERSION_template_haskell(2,10,0)
(map (\x -> AppT (ConT ''Sat) x) (cpPayloadElts ctxParam))
#else
(map (ClassP ''Sat . (:[])) (cpPayloadElts ctxParam))
#endif
satInstHead
[ValD (VarP dictNm)
(NormalB (LamE (replicate (length eqs) (ConP 'Refl []))
(TupE (replicate (length (cpPayloadElts ctxParam))
(VarE 'dict)
)
)
)
)
[]
]
nms <- replicateM (length tvs) (newName "a")
err <- [| error "Impossible Sat instance!" |]
let defSatInst = InstanceD
#if MIN_VERSION_template_haskell(2,11,0)
Nothing
#endif
[] (foldl' AppT (ConT satNm) (map VarT (ctx : nms)))
[ValD (VarP dictNm)
(NormalB (LamE (replicate (length eqs) (ConP 'Refl [])) err))
[]
]
return (ctxParam { cpSat = Just (satNm, dictNm) }, [satClass, satInst, defSatInst])
genSatClasses :: [CtxParam] -> Q ([CtxParam], [Dec])
genSatClasses ps = (second concat . unzip) <$> mapM genSatClass ps
repr1 :: Flag -> Name -> Q [Dec]
repr1 f n = do
info' <- reify n
case info' of
TyConI d -> do
let dInfo = typeInfo d
paramNames = map tyVarBndrName (typeParams dInfo)
nm = typeName dInfo
constrs = typeConstrs dInfo
let ty = foldl' (\x p -> x `AppT` (VarT p)) (ConT nm) paramNames
let rTypeName = rName1 n
ctx <- newName "ctx"
ctxParams <- case f of
Conc -> ctx_params dInfo ctx constrs
Abs -> return []
r1Ty <- [t| $(conT $ ''R1) $(varT ctx) $(return ty) |]
#if MIN_VERSION_template_haskell(2,10,0)
let ctxRep = map (\p -> AppT (ConT ''Rep) (VarT p)) paramNames
#else
let ctxRep = map (\p -> ClassP (''Rep) [VarT p]) paramNames
#endif
rSig = SigD rTypeName
(ForallT
(map PlainTV (ctx : paramNames))
ctxRep
(foldr (AppT . AppT ArrowT) r1Ty (map cpType ctxParams))
)
rcons <- zipWithM (repcon1 dInfo) ctxParams constrs
body <- case f of
Conc -> [| Data1 $(repDT nm paramNames)
(catMaybes $(return (ListE rcons))) |]
Abs -> [| Abstract1 $(repDT nm paramNames) |]
let rhs = LamE (map (VarP . cpName) ctxParams) body
rDecl = ValD (VarP rTypeName) (NormalB rhs) []
(ctxParams', satClasses) <- genSatClasses ctxParams
let mkCtxRec c = case cpSat c of
#if MIN_VERSION_template_haskell(2,10,0)
Nothing -> map (\x -> AppT (ConT ''Sat) x) (cpPayloadElts c)
Just (s,_) -> [foldl AppT (ConT s) (map VarT (cpCtxName c : paramNames))]
#else
Nothing -> map (ClassP ''Sat . (:[])) (cpPayloadElts c)
Just (s,_) -> [ClassP s (map VarT (cpCtxName c : paramNames))]
#endif
ctxRec = nub $ concatMap mkCtxRec ctxParams'
mkDictArg c = case cpSat c of
Just (_,dn) -> VarE dn
Nothing -> TupE (replicate (length (cpPayloadElts c)) (VarE 'dict))
dicts = map mkDictArg ctxParams'
inst <- instanceD (return $ ctxRep ++ ctxRec)
(conT ''Rep1 `appT` varT ctx `appT` (return ty))
[valD (varP 'rep1) (normalB (appsE (varE rTypeName
: map return dicts))) []]
decs <- repr f n
return (decs ++ [rSig, rDecl] ++ satClasses ++ [inst])
repr1s :: Flag -> [Name] -> Q [Dec]
repr1s f ns = concat <$> mapM (repr1 f) ns
derive :: [Name] -> Q [Dec]
derive = repr1s Conc
derive_abstract :: [Name] -> Q [Dec]
derive_abstract = repr1s Abs
stringName :: Name -> Q Exp
stringName n = return (LitE (StringL (nameBase n)))
data TypeInfo = TypeInfo { typeName :: Name
, typeParams :: [TyVarBndr]
, typeConstrs :: [ConstrInfo]
}
data ConstrInfo = ConstrInfo { constrName :: Name
, constrBinders :: [TyVarBndr]
, constrCxt :: Cxt
, constrFields :: [FieldInfo]
, isOnlyConstr :: Bool
}
mkConstr :: Name -> ConstrInfo
mkConstr nm = ConstrInfo nm [] [] [] False
data FieldInfo = FieldInfo { fieldName :: Maybe Name
, fieldType :: Type
}
typeInfo :: Dec -> TypeInfo
typeInfo d = case d of
(DataD {}) ->
TypeInfo (getName d) (paramsA d) (consA d)
(NewtypeD {}) ->
TypeInfo (getName d) (paramsA d) (consA d)
_ -> error ("derive: not a data type declaration: " ++ show d)
where
#if MIN_VERSION_template_haskell(2,11,0)
getName (DataD _ n _ _ _ _) = n
getName (NewtypeD _ n _ _ _ _) = n
getName x = error $ "Impossible! " ++ show x ++ " is neither data nor newtype"
paramsA (DataD _ _ ps _ _ _) = ps
paramsA (NewtypeD _ _ ps _ _ _) = ps
consA (DataD _ _ _ _ cs _) = rememberOnly $ map conA cs
consA (NewtypeD _ _ _ _ c _) = rememberOnly $ [ conA c ]
#else
getName (DataD _ n _ _ _) = n
getName (NewtypeD _ n _ _ _) = n
getName x = error $ "Impossible! " ++ show x ++ " is neither data nor newtype"
paramsA (DataD _ _ ps _ _) = ps
paramsA (NewtypeD _ _ ps _ _) = ps
consA (DataD _ _ _ cs _) = rememberOnly $ map conA cs
consA (NewtypeD _ _ _ c _) = rememberOnly $ [ conA c ]
#endif
conA (NormalC c xs) = (mkConstr c)
{ constrFields = map normalField xs }
conA (RecC c xs) = (mkConstr c)
{ constrFields = map recField xs }
conA (InfixC t1 c t2) = (mkConstr c)
{ constrFields = map normalField [t1, t2] }
conA (ForallC bdrs cx con) = let c' = conA con
in c' { constrBinders = bdrs ++ constrBinders c'
, constrCxt = cx ++ constrCxt c'
}
#if MIN_VERSION_template_haskell(2,11,0)
conA (GadtC [c] xs ty) = (mkConstr c)
{ constrFields = map normalField xs }
conA (RecGadtC [c] xs ty) = (mkConstr c)
{ constrFields = map recField xs }
#endif
normalField x = FieldInfo
{ fieldName = Nothing
, fieldType = snd x
}
recField (n, _, t) = FieldInfo
{ fieldName = Just $ simpleName n
, fieldType = t
}
rememberOnly :: [ConstrInfo] -> [ConstrInfo]
rememberOnly [con] = [con { isOnlyConstr = True }]
rememberOnly cons = cons
simpleName :: Name -> Name
simpleName nm =
let s = nameBase nm
in case dropWhile (/=':') s of
[] -> mkName s
_:[] -> mkName s
_:t -> mkName t
tyVarBndrName :: TyVarBndr -> Name
tyVarBndrName (PlainTV n) = n
tyVarBndrName (KindedTV n _) = n
deriveRess :: S.Set Int -> Q [Dec]
deriveRess = S.fold (liftM2 (++) . deriveResMaybe) (return [])
deriveResMaybe :: Int -> Q [Dec]
deriveResMaybe n = recover
(deriveRes n)
(reify (mkName $ "Res" ++ show n) >> return [])
deriveRes :: Int -> Q [Dec]
deriveRes n | n < 0 = error "deriveRes should only be called with positive arguments"
deriveRes n = do
c <- newName "c"
a <- newName "a"
bs <- replicateM n (newName "b")
liftM (deriveResData n c a bs:) (deriveResDestr n c a bs)
deriveResData :: Int -> Name -> Name -> [Name] -> Dec
deriveResData n c a bs =
DataD [] (mkName $ "Res" ++ show n) (map PlainTV [c,a])
#if MIN_VERSION_template_haskell(2,11,0)
Nothing
#endif
[deriveResultCon n c a bs, deriveNoResultCon n] []
deriveResultCon :: Int -> Name -> Name -> [Name] -> TH.Con
deriveResultCon n c a bs =
ForallC
(map PlainTV bs)
#if MIN_VERSION_template_haskell(2,10,0)
(map (\x -> AppT (ConT ''Rep) (VarT x)) bs)
#else
(map (ClassP ''Rep . (:[]) . VarT) bs)
#endif
(NormalC (mkName $ "Result" ++ show n)
[(notStrict, deriveResultEq c a bs)]
)
where
#if MIN_VERSION_template_haskell(2,11,0)
notStrict = Bang NoSourceUnpackedness NoSourceStrictness
#else
notStrict = NotStrict
#endif
deriveResultEq :: Name
-> Name
-> [Name]
-> Type
deriveResultEq c a bs = AppT (AppT (ConT (mkName ":=:")) (VarT a))
(appsT (VarT c) bs)
deriveNoResultCon :: Int -> TH.Con
deriveNoResultCon n = NormalC (mkName $ "NoResult" ++ show n) []
deriveResDestr :: Int -> Name -> Name -> [Name] -> Q [Dec]
deriveResDestr n c a bs = do
let sig = deriveResDestrSig n c a bs
decl <- deriveResDestrDecl n c a (length bs)
return [sig, decl]
deriveResDestrSig :: Int -> Name -> Name -> [Name] -> Dec
deriveResDestrSig n c a bs =
SigD (mkName $ "destr" ++ show n)
(ForallT (map PlainTV $ [c,a] ++ bs) []
( (AppT (ConT ''R) (VarT a)) `arr`
(AppT (ConT ''R) (appsT (VarT c) bs)) `arr`
(AppT (AppT (ConT (mkName $ "Res" ++ show n)) (VarT c)) (VarT a))
)
)
deriveResDestrDecl :: Int -> Name -> Name -> Int -> Q Dec
deriveResDestrDecl n c a bNum = do
[s1, s2] <- replicateM 2 (newName "s")
bs <- replicateM bNum (newName "b")
return $
FunD
(mkName $ "destr" ++ show n)
[ Clause
[ deriveResDestrLPat s1 bs
, deriveResDestrRPat s2
]
(GuardedB
[ ( NormalG (AppE (AppE (VarE '(==)) (VarE s1)) (VarE s2))
, AppE (ConE (mkName $ "Result" ++ show n))
(SigE (AppE (VarE 'unsafeCoerce) (ConE 'Refl))
(deriveResultEq c a bs)
)
)
, ( NormalG (VarE 'otherwise)
, ConE (mkName $ "NoResult" ++ show n)
)
]
)
[]
, Clause
[ WildP, WildP ]
(NormalB (ConE (mkName $ "NoResult" ++ show n)))
[]
]
deriveResDestrLPat :: Name -> [Name] -> Pat
deriveResDestrLPat s1 bs =
ConP 'Data
[ ConP 'DT
[ VarP s1
, foldr (\p l -> InfixP p '(:+:) l) (ConP 'MNil [])
(map (SigP WildP . AppT (ConT ''R) . VarT) bs)
]
, WildP
]
deriveResDestrRPat :: Name -> Pat
deriveResDestrRPat s2 =
ConP 'Data
[ ConP 'DT [ VarP s2, WildP ]
, WildP
]
infixr 5 `arr`
arr :: Type -> Type -> Type
arr t1 t2 = AppT (AppT ArrowT t1) t2
appsT :: Type -> [Name] -> Type
appsT t [] = t
appsT t (n:ns) = appsT (AppT t (VarT n)) ns